947
Views
61
CrossRef citations to date
0
Altmetric
Original Article

Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice

, , , , , , , , & show all
Pages 312-321 | Received 15 Sep 2014, Accepted 19 Jun 2015, Published online: 17 Aug 2015

References

  • Ahamed M, Alsalhi MS, Siddiqui MK. 2010a. Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–8
  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y. 2008. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–10
  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. 2010b. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–9
  • Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G. 2012. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291:65–72
  • Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP. 2012. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 3:2
  • Baan RA. 2007. Carcinogenic hazards from inhaled carbon black, titanium dioxide, and talc not containing asbestos or asbestiform fibers: recent evaluations by an IARC Monographs Working Group. Inhal Toxicol 19:213–28
  • Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, et al. 2008. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14
  • Borm PJ, Schins RP, Albrecht C. 2004. Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer 110:3–14
  • Brunborg G, Duale N, Haaland JT, Bjorge C, Soderlund E, Dybing E, et al. 2007. DNA repair capacities in testicular cells of rodents and man. In: Anderson D, Brinkworth MH, eds. Issues in Toxicology. Male-mediated Developmental Toxicity. London, UK: Royal Society of Chemistry, 278–90
  • Chithrani BD, Chan WC. 2007. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–50
  • Chithrani BD, Ghazani AA, Chan WC. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–8
  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, et al. 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–9
  • Dobrzynska MM, Gajowik A, Radzikowska J, Lankoff A, Dusinska, M, Kruszewski M. 2014. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology 315:86–91
  • Duale N, Brunborg G, Ronningen KS, Briese T, Aarem J, Aas KK, et al. 2012. Human blood RNA stabilization in samples collected and transported for a large biobank. BMC Res Notes 5:510
  • Duale N, Olsen AK, Christensen T, Butt ST, Brunborg G. 2010. Octyl methoxycinnamate modulates gene expression and prevents cyclobutane pyrimidine dimer formation but not oxidative DNA damage in UV-exposed human cell lines. Toxicol Sci 114:272–84
  • Duale N, Steffensen IL, Andersen J, Brevik A, Brunborg G, Lindeman B. 2014. Impaired sperm chromatin integrity in obese mice. Andrology 2:234–43
  • Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczynska A, Chwastowska J, et al. 2012. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 32:920–8
  • EFSA. 2011. Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. Parma, Italy: European Food Safety Authority (EFSA). Available at: http://www.efsa.europa.eu/en/search/doc/2379.pdf. Accessed on 27 July 2015.
  • Ema M, Kobayashi N, Naya M, Hanai S, Nakanishi J. 2010. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 30:343–52
  • Evenson D, Jost L. 2000. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci 22:169–89
  • Evenson DP, Baer RK, Jost LK. 1989. Long-term effects of triethylenemelamine exposure on mouse testis cells and sperm chromatin structure assayed by flow cytometry. Environ Mol Mutagen 14:79–89
  • Evenson DP, Larson KL, Jost LK. 2002. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 23:25–43
  • Foldbjerg R, Dang DA, Autrup H. 2011. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–50
  • Gao H, Shi W, Freund LB. 2005. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102:9469–74
  • Garcia TX, Costa GM, Franca LR, Hofmann MC. 2014. Sub-acute intravenous administration of silver nanoparticles in male mice alters Leydig cell function and testosterone levels. Reprod Toxicol 45c:59–70
  • Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, Dobrzynska M, Instanes C, Brunborg G, et al. 2012. Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett 214:251–8
  • Gutzkow KB, Langleite TM, Meier S, Graupner A, Collins AR, Brunborg G. 2013. High-throughput comet assay using 96 minigels. Mutagenesis 28:333–40
  • Hadrup N, Lam HR. 2014. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review. Regul Toxicol Pharmacol 68:1–7
  • Hansen SH, Olsen AK, Derlund EJ, Brunborg G. 2010. In vitro investigations of glycidamide-induced DNA lesions in mouse male germ cells and in mouse and human lymphocytes. Mutation Res Genet Toxicol Environ Mutagen 696:55–61
  • Hertel-Aas T, Oughton DH, Jaworska A, Brunborg G. 2011. Induction and repair of DNA strand breaks and oxidised bases in somatic and spermatogenic cells from the earthworm Eisenia fetida after exposure to ionising radiation. Mutagenesis 26:783–93
  • Kang SJ, Lee YJ, Kim BM, Choi YJ, Chung HW. 2011. Cytotoxicity and genotoxicity of titanium dioxide nanoparticles in UVA-irradiated normal peripheral blood lymphocytes. Drug Chem Toxicol 34:277–84
  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY. 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076–84
  • Kirkland D, Speit G. 2008. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens III. Appropriate follow-up testing in vivo. Mutat Res 654:114–32
  • Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, et al. 1999. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci USA 96:13300–5
  • Kovvuru P, Mancilla PE, Shirode AB, Murray TM, Begley TJ, Reliene R. 2014. Oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues. Nanotoxicology 9:162–71
  • Kruszewski M, Gradzka I, Bartlomiejczyk T, Chwastowska J, Sommer S, Grzelak A, et al. 2013. Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicol Lett 219:151–9
  • Kumari A, Yadav SK. 2011. Cellular interactions of therapeutically delivered nanoparticles. Expert Opin Drug Deliv 8:141–51
  • Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, Sartowska B, et al. 2012. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicol Lett 208:197–213
  • Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-De JA, Noorlander CW, et al. 2010. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31:8350–61
  • Liu J, Hurt RH. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–75
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–8
  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. 2014. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–78
  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. 2005a. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8
  • Oberdorster G, Oberdorster E, Oberdorster J. 2005b. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–39
  • Olsen AK, Bjortuft H, Wiger R, Holme J, Seeberg E, Bjoras M, Brunborg G. 2001. Highly efficient base excision repair (BER) in human and rat male germ cells. Nucleic Acids Res 29:1781–90
  • Olsen AK, Duale N, Bjoras M, Larsen CT, Wiger R, Holme JA, et al. 2003. Limited repair of 8-hydroxy-7,8-dihydroguanine residues in human testicular cells. Nucleic Acids Res 31:1351–63
  • Radak Z, Boldogh I. 2010. 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med 49:587–96
  • Rejeski D, Lekas D. 2008. Nanotechnology field observations: scouting the new industrial west. J Cleaner Prod 16:1014–17
  • Roiter Y, Ornatska M, Rammohan AR, Balakrishnan J, Heine DR, Minko S. 2008. Interaction of nanoparticles with lipid membrane. Nano Lett 8:941–4
  • Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–8
  • SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks). 2009. Risk assessment of products of nanotechnologies. Directorate-General for Health & Consumers, EU. Available at: http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf. Accessed on 27 July 2015
  • Shukla RK, Kumar A, Pandey AK, Singh SS, Dhawan A. 2011a. Titanium dioxide nanoparticles induce oxidative stress-mediated apoptosis in human keratinocyte cells. J Biomed Nanotechnol 7:100–1
  • Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. 2011b. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro 25:231–41
  • Singh NP, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–91
  • Song MF, Li YS, Kasai H, Kawai K. 2012. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr 50:211–16
  • Soumya RS, Hela PG. 2013. Nano silver based targeted drug delivery for treatment of cancer. Der Pharmacia Lettre 5:189–97
  • Synowiec E, Stefanska J, Morawiec Z, Blasiak J, Wozniak K. 2008. Association between DNA damage, DNA repair genes variability and clinical characteristics in breast cancer patients. Mutat Res 648:65–72
  • Tiwari DK, Jin T, Behari J. 2011. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 21:13–24
  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. 2009. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–9
  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84
  • Wiger R, Hongslo JK, Evenson DP, De Angelis P, Schwarze PE, Holme JA. 1995. Effects of acetaminophen and hydroxyurea on spermatogenesis and sperm chromatin structure in laboratory mice. Reprod Toxicol 9:21–33
  • Xiang D, Zheng Y, Duan W, Li X, Yin J, Shigdar S, et al. 2013. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomedicine 8:4103–13
  • Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, Sugawara I, et al. 2009. Effect of nanoparticles on the male reproductive system of mice. Int J Androl 32:337–42
  • Yoshida S, Hiyoshi K, Oshio S, Takano H, Takeda K, Ichinose T. 2010. Effects of fetal exposure to carbon nanoparticles on reproductive function in male offspring. Fertil Steril 93:1695–9
  • You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H. 2012. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–201
  • Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. 2009. Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.