313
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Proteomic analyses of early response of unicellular eukaryotic microorganism Tetrahymena thermophila exposed to TiO2 particles

, , , , , , , , , & show all
Pages 542-556 | Received 27 Oct 2014, Accepted 29 Aug 2015, Published online: 02 Nov 2015

References

  • Aconitate/iron regulatory protein 2 (IPR007249). Interpro, EMBL-EBI. 2014. Available at: http://www.ebi.ac.uk/interpro/entry/IPR006249. Accessed on 25 June 2014
  • Adachi T, Sato K, Tomita Y. 2003. Directional dependence of osteoblastic calcium response to mechanical stimuli. Biomech Model Mechanobiol 2:73–82
  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. 2010. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–9
  • Amsterdam A, Pitzer F, Baumeister W. 1993. Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis associated with a role in cell cycle control. Proc Natl Acad Sci USA 90:99–103
  • Anderson N, Borlak J. 2006. Drug-induced phospholipidosis. FEBS Lett 580:5533–40
  • Ariano P, Zamburlin P, Gilardino A, Mortera R, Onida B, Tomatis M, et al. 2011. Interaction of spherical silica nanoparticles with neuronal cells: size-dependent toxicity and perturbation of calcium homeostasis. Small 7:766–74
  • Blazer-Yost BL, Banga A, Amos A, Chernoff E, Lai X, Li C, et al. 2011. Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 5:354–71
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54
  • Cao Y, Liu H, Li Q, Wang Q, Zhang W, Chen Y, et al. 2013. Effect of lead sulfide nanoparticles exposure on calcium homeostasis in rat hippocampus neurons. J Inorg Biochem 126:70–5
  • Dua P, Chaudhari KN, Lee CH, Chaudhari NK, Hong SW, Yu JS, et al. 2011. Evaluation of toxicity and gene expression changes triggered by oxide nanoparticles. Bull Korean Chem Soc 32:2051–7
  • Enenkel C, Lehmann A, Kloetzel PM. 1998. Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J 17:6144–54
  • Espartero J, Pintor-Toro JA, Pardo JM. 1994. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol 25:217–27
  • Falugi C, Aluigi MG, Chiantore MC, Privitera D, Ramoino P, Gatti MA, et al. 2012. Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Mar Environ Res 76:114–21
  • Ferin J, Oberdorster G, Penney DP. 1992. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–42
  • Gao Y, Gopee NV, Howard PC, Yu LR. 2011. Proteomic analysis of early response lymph node proteins in mice treated with titanium dioxide nanoparticles. J Proteomics 74:2745–59
  • Ge Y, Bruno M, Wallace K, Winnik W, Prasad RY. 2011. Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide. Proteomics 11:2406–22
  • Guillemin I, Becker M, Ociepka K, Friauf E, Nothwang HG. 2005. A subcellular prefractionation protocol for minute amounts of mammalian cell cultures and tissue. Proteomics 5:35–45
  • Guo D, Bi H, Wang D, Wu Q. 2013. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells. Int J Biochem Cell Biol 45:1849–59
  • Hay R, Bohni P, Gasser S. 1984. How mitochondria import proteins. Biochim Biophys Acta 779:65–87
  • Huang CC, Aronstam RS, Chen DR, Huang YW. 2010. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24:45–55
  • Ingelsson B, Vener AV. 2012. Phosphoproteomics of Arabidopsis chloroplasts reveals involvement of the STN7 kinase in phosphorylation of nucleoid protein pTAC16. FEBS Lett 586:1265–71
  • Jacobs ME, Desouza LV, Samaranayake H, Pearlman RE, Siu KW, Klobutcher LA. 2006. The Tetrahymena thermophila phagosome proteome. Eukaryotic Cell 5:1990–2000
  • Jebali J, Chicano-Galvez E, Fernandez-Cisnal R, Banni M, Chouba L, Boussetta H, et al. 2014. Proteomic analysis in caged Mediterranean crab (Carcinus maenas) and chemical contaminant exposure in Téboulba Harbour, Tunisia. Ecotoxicol Environ Safety 100:15–26
  • Jeon Y-M, Park S-K, Lee M-Y. 2011. Proteomic analysis of hepatotoxicity induced by titanium nanoparticles in mouse liver. J Korean Soc Appl Biol Chem 54:852–9
  • Jin J, Hulette C, Wang Y, Zhang T, Pan C, Wadhwa R, Zhang J. 2006. Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol Cell Proteomics 5:1193–204
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Stone V. 2009. Identification of the mechanisms that drive the toxicity of TiO(2)particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol 6:33
  • Klein U, Gernold M, Kloetzel PM. 1990. Cell-specific accumulation of Drosophila proteasomes (MCP) during early development. J Cell Biol 111:2275–82
  • Lockwood BL, Somero GN. 2011. Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus). Mol Ecol 20:517–29
  • Luo Z-X, Wang Z-H, Xu B, Sarakiotis IL. 2014. Measurement and characterization of engineered titanium dioxide nanoparticles in the environment. Appl Phys Eng 15:593–605
  • Matranga V, Corsi I. 2012. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res 76:32–40
  • Menendez JA, Lupu R. 2007. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–77
  • Monteiller C, Tran L, Macnee W, Faux S, Jones A, Miller B, Donaldson K. 2007. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–15
  • Mortimer M, Kasemets K, Vodovnik M, Marinsek-Logar R, Kahru A. 2011. Exposure to CuO nanoparticles changes the fatty acid composition of protozoa Tetrahymena thermophila. Environ Sci Technol 45:6617–24
  • Palmer A, Rivett AJ, Thomson S, Hendil KB, Butcher GW, Fuertes G, Knecht E. 1996. Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol. Biochem J 316:401–7
  • Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K. 2008. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–9
  • R Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org/
  • Rabilloud T, Kieffer S, Procaccio V, Louwagie M, Courchesne PL, Patterson SD, et al. 1998. Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome. Electrophoresis 19:1006–14
  • Rajapakse K, Drobne D, Valant J, Vodovnik M, Levart A, Marinsek-Logar R. 2012. Acclimation of Tetrahymena thermophila to bulk and nano-TiO2 particles by changes in membrane fatty acids saturation. J Hazard Mater 221:199–205
  • Rawlings ND, Barrett AJ. 1995. Evolutionary families of metallopeptidases. Meth Enzymol 248:183–228
  • Ray S, Chandra H, Srivastava S. 2010. Nanotechniques in proteomics: current status, promises and challenges. Biosens Bioelectron 25:2389–401
  • Schultz TW. 1997. TETRATOX: Tetrahymena pyriformis population growth impairment endpointa surrogate for fish lethality. Toxicol Mech Meth 7:289–309
  • Schärtl W. (2007). Light Scattering from polymer solutions and nanoparticle dispersions. Berlin, Germany: Springer Verlag
  • Shi W, Zhou Y, Wild J, Adler J, Gross CA. 1992. DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol 174:6256–63
  • Siddiqi NJ, Abdelhalim MA, El-Ansary AK, Alhomida AS, Ong WY. 2012. Identification of potential biomarkers of gold nanoparticle toxicity in rat brains. J Neuroinflammation 9:123
  • Simon M, Barberet P, Delville MH, Moretto P, Seznec H. 2011. Titanium dioxide nanoparticles induced intracellular calcium homeostasis modification in primary human keratinocytes. Towards an in vitro explanation of titanium dioxide nanoparticles toxicity. Nanotoxicology 5:125–39
  • Smith DGS, Gawryluk RMR, Spencer DF, Pearlman RE, Siu KWM, Gray MW. 2007. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol 374:837–63
  • Smith JC, Northey JGB, Garg J, Pearlman RE, Siu KWM. 2005. Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. J Proteome Res 4:909–19
  • Sohm B, Immel F, Bauda P, Pagnout C. 2015. Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics 15:98–113
  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–52
  • Tang Y, Guest JR, Artymiuk PJ, Read RC, Green J. 2004. Post-transcriptional regulation of bacterial motility by aconitase proteins. Mol Microbiol 51:1817–26
  • Tedesco S, Bayat N, Buqué X, Aspichueta P, Fresnedo O, Cristobal S. 2015. Proteomic and lipidomic profiling reveal effects of exposure to metal and metal oxide nanoparticles exposure in primary mouse hepatocyte culture. Omics 5:1–14
  • Thomas T, Thomas TJ. 2003. Polyamine metabolism and cancer. J Cell Mol Med 7:113–26
  • Tian M, Chen X, Xiong Q, Xiong J, Xiao C, Ge F, et al. 2014. Phosphoproteomic analysis of protein phosphorylation networks in Tetrahymena thermophila, a model single-celled organism. Mol Cell Proteomics 13:503–19
  • Tilton SC, Karin NJ, Tolic A, Xie Y, Lai X, Hamilton RF, et al. 2014. Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns. Nanotoxicology 8:533–48
  • Triosephosphate isomerase (IPR000652). Interpro, EMBL-EBI 2014 [Online] Available at: http://www.ebi.ac.uk/interpro/entry/IPR000652. Accessed on 20 June 2014
  • Turkewitz AP, Orias E, Kapler G. 2002. Functional genomics: the coming of age for Tetrahymena thermophila. Trends Genet 18:35–40
  • Urban C, Schurtenberger P. 1998. Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207:150–8
  • UCSF In-gel digestion protocol. UCSF Mass Spectrometry Facility. 2009. Available at: http://msf.ucsf.edu/ingel.html. Accessed on 25 June 2013
  • Verma D, Ye N, Meng F, Sachs F, Rahimzadeh J, Hua SZ. 2012. Interplay between cytoskeletal stresses and cell adaptation under chronic flow. PLoS One 7:e44167
  • Wallace HM, Fraser AV. 2003. Polyamine analogues as anticancer drugs. Biochem Soc Trans 31:393–6
  • Wallace HM, Fraser AV, Hughes A. 2003. A perspective of polyamine metabolism. Biochem J 376:1–14
  • Wang M, Petersen NO. 2013. Lipid-coated gold nanoparticles promote lamellar body formation in A549 cells. Biochim Biophys Acta 1831:1089–97
  • Werner I, Hinton DE. 1999. Field validation of hsp70 stress proteins as biomarkers in Asian clam (Potamocorbula amurensis): is downregulation an indicator of stress? Biomarkers 4:473–84
  • Witzmann FA, Monteiro-Riviere NA. 2006. Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. Nanomedicine 2:158–68
  • Yang X, Liu J, He H, Zhou L, Gong C, Wang X, et al. 2010. SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part Fibre Toxicol 7:1
  • Zhang C, Gao S, Molascon AJ, Liu Y, Andrews PC. 2014. Quantitative proteomics reveals histone modifications in crosstalk with H3 lysine 27 methylation. Mol Cell Proteomics 13:749–59

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.