471
Views
22
CrossRef citations to date
0
Altmetric
Original Article

In vitro screening of metal oxide nanoparticles for effects on neural function using cortical networks on microelectrode arrays

, , , , , & show all
Pages 619-628 | Received 08 Aug 2014, Accepted 08 Oct 2015, Published online: 23 Nov 2015

References

  • Arnold MC, Badireddy AR, Wiesner MR, Di Giulo RT, Meyer JN. 2013. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch Environ Contam Toxicol 65:224–33
  • Boyes WK, Chen R, Chen C, Yokel RA. 2012. The neurotoxic potential of engineered nanomaterials. Neurotoxicology 33:902–10
  • Cassee FR, van Balen EC, Singh C, Green D, Muijser H, Weinstein J, Dreher K. 2011. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol 41:213–29
  • Cohen J, DeLoid G, Pyrgiotakis G, Demokritou P. 2013. Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 7:417–31
  • Cohen JM, Teeguarden JG, Demodritou P. 2014. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part Fibre Toxicol 11:20. doi: 10.1186/1743-8977-11-20
  • Dayan P, Abbot L. 2005. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge: The MIT Press
  • Defranchi E, Novellino A, Whelan M, Vogel S, Ramirez T, van Ravenzwaay B, Landsiedel R. 2011. Feasibility assessment of mirco-electrode chip assay as a method of detecting neurotoxicity in vitro. Front Neuroeng 4:6. doi: 10.3389/fneng.2011.00006
  • DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, et al. 2014. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 5:3514. doi:10.1038/ncomms4514
  • Dreher K, Strickland J, Polk W, Shafer TJ. In vitro cardiotoxicity screening of silver and metal oxide nanoparticles using human induced pluripotent stem cell-derived cardiomyocytes. Abstract #1939. Society of Toxicology 2015 Annual Meeting Abstracts. Available at:: www.toxicology.org
  • Gao X, Yin S, Tang M, Chen J, Yang Z, Yang W, et al. 2011. Effects of developmental exposure to TiO2 nanoparticles on synaptic plasticity in hippocampal dentate gyrus area: an in vivo study in anesthetized rats. Biol Trace Elem Res 143:1616–28
  • Gottschalk F, Nowack B. 2011. The release of engineered nanomaterials to the environment. J Environ Monit. 13:1145–55
  • Gramowski A, Flossdorf J, Bhattacharya K, Jonas L, Lantow M, Rahman Q, et al. 2010. Nanoparticles induce changes of the electrical activity of neuronal networks on microelectrode array neurochips. Environ Health Perspect 118:1363–9
  • Harrill JA, Robinette BL, Freudenrich T, Mundy WR. 2013. Use of high content image analyses to detect chemical-mediated effects on neurite sub-populations in primary rat cortical neurons. Neurotoxicology 34:61–73
  • Harrill JA, Robinette BL, Mundy WR. 2011. Use of high content image analysis to detect chemical-induced changes in synaptogenesis in vitro. Toxicol in Vitro 25:368–87
  • Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, Teeguarden JG. 2010. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7:36. doi: 10.1186/1743-8977-7-36
  • Hu R, Gong X, Duan Y, Li N, Che Y, Cui Y, et al. 2010. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials 31:8043–50
  • Hu R, Zheng L, Zhang T, Gao G, Cui Y, Cheng Z, et al. 2011. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater 191:32–40
  • Johnstone AF, Gross GW, Weiss DG, Schroeder OH, Gramowski A, Shafer TJ. 2010. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31:331–50
  • Kiser MA, Westerhoff P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K. 2009. Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–63
  • Kitchin KT, Prasad RY, Wallace K. 2011. Oxidative stress studies of six TiO2 and two CeO2 nanomaterials: immuno-spin trapping results with DNA. Nanotoxicology 5:546–56
  • Liao CM, Chiang YH, Chio CP. 2009. Assessing the airborne titanium dioxide nanoparticle-related exposure hazard at workplace. J Hazard Mater 162:57–65
  • Mack CM, Lin B, Turner J, Johnstone AFM, Burgoon L, Shafer TJ. 2014. Burst and principal components analyses of MEA data for 16 chemicals describe at least three effects classes. Neurotoxicology. 40:75–85
  • McConnell ER, McClain MA, Ross J, Lefew WR, Shafer TJ. 2012. Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. Neurotoxicology 33:1048–57
  • Meibner T, Oelschlagel K, Potthoff A. 2014. Dispersion of nanomaterials used in toxicological studies: a comparison of sonication approaches demonstrated on TiO2 P25. J Nanoparticle Res 16:2228–41
  • Mundy WR, Freudenrich TM. 2000. Sensitivity of immature neurons in culture to metal-induced changes in reactive oxygen species and intracellular free calcium. Neurotoxicology 21:1135–44
  • Nam Y, Wheeler BC. 2011. In vitro microelectrode array technology and neural recordings. Crit Rev Biomed Eng 39:45–62
  • Novellino A, Scelfo B, Palosaari T, Price A, Sobanski T, Shafer T, et al. 2011. Development of micro-electrode array based tests for neurotoxicity: assessment of interlaboratory reproducibility with neuroactive chemicals. Front Neuroeng 4:4. doi: 10.3389/fneng.2011.00004
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. 2004. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicol 16:437–45
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005a. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–39
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. 2005b. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fibre Toxicol 2:1–35
  • Pal AK, Aalaei I, Gadde S, Gaines P, Schmidt D, Demokritou P, Bello D. 2014. High resolution characterization of engineered nanomaterial dispersions in complex media using tunable resistive pulse screening technology. ACSNano 8:9003–15
  • Robinette BL, Harrill JA, Mundy WR, Shafer TJ. 2011. In vitro assessment of developmental neurotoxicity: use of microelectrode arrays to measure functional changes in neuronal network ontogeny. Front Neuroeng 4:1. doi: 10.3389/fneng.2011.00001
  • Sanders K, Degn LL, Mundy WR, Zucker RM, Dreher K, Zhao B, et al. 2012. In vitro phototoxicity and hazard identification of nano-scale titanium dioxide. Toxicol Appl Pharmacol 258:226–36
  • Sharma A, Muresanu DF, Patnaik R, Sharma HS. 2013. Size- and age-dependent neurotoxicity of engineered metal nanoparticles in rats. Mol Neurobiol 48:386–96
  • Simkó M, Mattsson M-O. 2010. Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 7:42. doi: 10.1186/1743-8977-7-42
  • U.S. Environmental Protection Agency, Office of Research and Development – Nanomaterials Research Strategy, EPA 620/K-09/011, June 2009
  • Valdivia P, Martin M, LeFew WR, Ross J, Houck KA, Shafer TJ. 2014. Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds. Neurotoxicology 44:204–17. [CrossRef][10.1016/j.neuro.2014.06.012]
  • Wallace K, Strickland JD, Valdivia P, Mundy WR, Shafer TJ. 2015. A multiplexed method for the determination of compound effects on network function and viability in MEAs. Neurotoxicology. 49:79–85
  • Wang J, Chem C, Liu Y, Jio F, Li W, Lao F, et al. 2008a. Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80
  • Wang J, Liu Y, Jiao F, Lao F, Li W, Gu Y, et al. 2008b. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles. Toxicology 254:82–90
  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. 2012. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–50
  • Xiong D, Fang T, Yu L, Sima X, Zhu W. 2011. Effects of Nanoscale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–52
  • Ze Y, Hu R, Wang X, Sang X, Ze X, Li B, et al. 2013. Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res a [Database] [Mismatch]
  • Ze Y, Sheng L, Zhao X, Ze X, Wang X, Zhou Q, et al. 2014. Neurotoxic characteristics of spatial recognition damage of the hippocampus in mice following subchronic peroral exposure to TiO2 nanoparticles. J Hazard Mater 264:219–29
  • Zhang L, Bai R, Li B, Ge C, Du J, Liu Y, et al. 2011. Rutile TiO2 particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicol Lett 207:73–81

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.