494
Views
39
CrossRef citations to date
0
Altmetric
Original Article

Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos

, , , , &
Pages 671-679 | Received 28 May 2015, Accepted 20 Sep 2015, Published online: 08 Dec 2015

References

  • Adeleye AS, Conway JR, Perez T, Rutten P, Keller AA. 2014. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ Sci Technol 48:12561–8
  • Adeleye AS, Keller AA. 2014. Long-term colloidal stability and metal leaching of single wall carbon nanotubes: effect of temperature and extracellular polymeric substances. Water Res 49:236–50
  • Adeleye AS, Keller AA, Miller RJ, Lenihan HS. 2013. Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. J Nanopart Res 15:1–18
  • Agca C, Klein WH, Venuti JM. 2009. Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment. Mech Dev 126:430–42
  • Allen JD. 2008. Size-specific predation on marine invertebrate larvae. Biol Bull 214:42–9
  • Amorim MJB, Scott-Fordsmand JJ. 2012. Toxicity of copper nanoparticles and CuCl2 salt to Enchytraeus albidus worms: survival, reproduction and avoidance responses. Environ Pollut 164:164–8
  • Åsbrink S, Waśkowska A. 1991. CuO: X-ray single-crystal structure determination at 196 K and room temperature. J Phys Condens Matter 3:8173–80
  • Bielmyer-Fraser GK, Jarvis TA, Lenihan HS, Miller RJ. 2014. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton. Environ Sci Technol 48:13443–50
  • Bosnjak I, Uhlinger KR, Heim W, Smital T, Franekic-Colic J, Coale K, et al. 2009. Multidrug efflux transporters limit accumulation of inorganic, but not organic, mercury in sea urchin embryos. Environ Sci Technol 43:8374–80
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54
  • Byrne M, Lamare M, Winter D, Dworjanyn SA, Uthicke S. 2013. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philos Trans R Soc Lond B Biol Sci 368:20120439
  • Cao S, Wang J, Chen H, Chen D. 2011. Progress of marine biofouling and antifouling technologies. Chin Sci Bull 56:598–612
  • Coffman JA, Davidson EH. 2001. Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry. Dev Biol 230:18–28
  • Cole SPC, Deeley RG. 2006. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 27:438–46
  • Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA. 2015. Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environ Sci Technol 49:2749–56
  • Covian-Nares JF, Smith RM, Vogel SS. 2008. Two independent forms of endocytosis maintain embryonic cell surface homeostasis during early development. Dev Biol 316:135–48
  • Cho W-S, Duffin R, Thielbeer F, Bradley M, Megson IL, MacNee W, et al. 2012. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126:469–77
  • Durand A, Chase Z, Remenyi T, Quéroué F. 2013. Microplate-reader method for the rapid analysis of copper in natural waters with chemiluminescence detection. Front Microbiol 3:437
  • Fairbairn EA, Keller AA, Mädler L, Zhou D, Pokhrel S, Cherr GN. 2011. Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development. J Hazard Mat 192:1565–71
  • Fernández N, Beiras R. 2001. Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 10:263–71
  • Garner KL, Suh S, Lenihan HS, Keller AA. 2015. Species sensitivity distributions for engineered nanomaterials. Environ Sci Technol 49:5753–9
  • George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, et al. 2012. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–59
  • George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, et al. 2011. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5:1805–17
  • Ghiselli A, Serafini M, Natella F, Scaccini C. 2000. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29:1106–14
  • Ghorani V, Mahdavi Shahri N, Ghassemzadeh Z, Mortazavi MS, Mohammadi E, Sadripour E. 2012. The effect of lead toxicity on embryonic development and early larval growth of the Echinometra mathaei sea urchin (Persian Gulf), morphologic and morphometric studies. Ann Biol Res 3:3321–7
  • Gilbert B, Fakra SC, Xia T, Pokhrel S, Mädler L, Nel A. 2012. The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano 6:4921–30
  • Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ. 2011. Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45:9356–62
  • Gunawan C, Teoh WY, Marquis CP, Amal R. 2011. Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5:7214–25
  • Guss KA, Ettensohn CA. 1997. Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues. Development 124:1899–908
  • Hamdoun A, Epel D. 2007. Embryo stability and vulnerability in an always changing world. Proc Natl Acad Sci USA 104:1745–50
  • Hanna S, Miller R, Lenihan H. 2014. Accumulation and toxicity of copper oxide engineered nanoparticles in a marine mussel. Nanomaterials 4:535–47
  • Hanna SK, Miller RJ, Zhou D, Keller AA, Lenihan HS. 2013. Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod. Aquat Toxicol 142–3:441–6
  • Hardin J, Coffman JA, Black SD, McClay DR. 1992. Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2. Development 116:671–85
  • Hart MW, Strathmann RR. 1994. Functional consequences of phenotypic plasticity in echinoid larvae. Biol Bull 186:291–9
  • Horstadius S. 1939. The mechanics of sea urchin development, studied by operative methods. Biol Rev 14:132–79
  • Hu W, Culloty S, Darmody G, Lynch S, Davenport J, Ramirez-Garcia S, et al. 2014. Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation. Chemosphere 108:289–99
  • Johnson CH, Epel D. 1981. Intracellular pH of sea urchin eggs measured by the dimethyloxazolidinedione (DMO) method. J Cell Biol 89:284–91
  • Joshi S, Ghosh I, Pokhrel S, Mädler L, Nau WM. 2012. Interactions of amino acids and polypeptides with metal oxide nanoparticles probed by fluorescent indicator adsorption and displacement. ACS Nano 6:5668–79
  • Kawaguchi M, Yasumasu S, Shimizu A, Kudo N, Sano K, Iuchi I, Nishida M. 2013. Adaptive evolution of fish hatching enzyme: one amino acid substitution results in differential salt dependency of the enzyme. J Exp Biol 216:1609–15
  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, et al. 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–7
  • King CK, Riddle MJ. 2001. Effects of metal contaminants on the development of the common Antarctic sea urchin Sterechinus neumayeri and comparisons of sensitivity with tropical and temperate echinoids. Mar Ecol Prog Ser 215:143–54
  • Kobayashi N, Okamura H. 2004. Effects of heavy metals on sea urchin embryo development. 1. Tracing the cause by the effects. Chemosphere 55:1403–12
  • Kovacic P, Somanathan R. 2010. Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): electron transfer and reactive oxygen species. J Nanosci Nanotechnol 10:7919–30
  • Lin S, Zhao Y, Ji Z, Ear J, Chang CH, Zhang H, et al. 2013. Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1. Small 9:1776–85
  • Lin S, Zhao Y, Xia T, Meng H, Ji Z, Liu R, et al. 2011. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano 5:7284–95
  • Loosli F, Le Coustumer P, Stoll S. 2013. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water Res 47:6052–63
  • Lyons DC, Martik ML, Saunders LR, McClay DR. 2014. Specification to biomineralization: following a single cell type as it constructs a skeleton. Integr Comp Biol 54:723–33
  • McIntyre DC, Lyons DC, Martik M, McClay DR. 2014. Branching out: origins of the sea urchin larval skeleton in development and evolution. Genesis 52:173–85
  • Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO. 2009. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5:389–99
  • Miller NJ, Rice-Evans C. 1997. Factors influencing the antioxidant activity determined by the ABTS+ radical cation assay. Free Radic Res 26:195–9
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–57
  • Nomura K, Shimizu T, Kinoh H, Sendai Y, Inomata M, Suzuki N. 1997. Sea urchin hatching enzyme (Envelysin): cDNA cloning and deprivation of protein substrate specificity by autolytic degradation. Biochemistry 36:7225–38
  • Oberdorster G. 2010. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Int Med 267:89–105
  • Okazaki K. 1960. Skeleton formation of sea urchin larvae. Embryologia 5:283–320
  • Pillai MC, Vines CA, Wikramanayake AH, Cherr GN. 2003. Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a b-catenin dependent pathway. Toxicology 186:93–108
  • Pokhrel S, Birkenstock J, Schowalter M, Rosenauer A, Mädler L. 2009. Growth of ultrafine single srystalline WO3 nanoparticles using flame spray pyrolysis. Cryst Growth Des 10:632–9
  • Pokhrel S, Nel AE, Mädler L. 2012. Custom-designed nanomaterial libraries for testing metal oxide toxicity. Acc Chem Res 46:632–41
  • Rawat J, Ray S, Rao P, Choudary NV. 2010. Recent developments of nanomaterial doped paints for the minimization of biofouling in submerged structures. Mater Sci Forum 657:75–82
  • Rosen G, Rivera-Duarte I, Bart Chadwick D, Ryan A, Santore RC, Paquin PR. 2008. Critical tissue copper residues for marine bivalve (Mytilus galloprovincialis) and echinoderm (Strongylocentrotus purpuratus) embryonic development: conceptual, regulatory and environmental implications. Mar Environ Res 66:327–36
  • Röttinger E, Martindale MQ. 2011. Ventralization of an indirect developing hemichordate by NiCl2 suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol 354:173–90
  • Ryu TK, Lee G, Rhee Y, Park H-S, Chang M, Lee S, et al. 2012. Identification of nickel response genes in abnormal early developments of sea urchin by differential display polymerase chain reaction. Ecotoxicol Environ Saf 84:18–24
  • Shacter E. 2000. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32:307–26
  • Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK. 2011. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159:1277–82
  • Siddiqui S, Goddard RH, Bielmyer-Fraser GK. 2015. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida. Aquat Toxicol 160:205–13
  • Soars N, Prowse T, Byrne M. 2009. Overview of phenotypic plasticity in echinoid larvae, ‘Echinopluteus transversus’ type vs. typical echinoplutei. Mar Ecol Prog Ser 383:113–25
  • Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, et al. 2010. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197:169–74
  • Tellis M, Lauer M, Nadella S, Bianchini A, Wood C. 2014. The effects of copper and nickel on the embryonic life stages of the purple sea urchin (Strongylocentrotus purpuratus). Arch Environ Contam Toxicol 67:453–64
  • Teoh WY, Amal R, Mädler L. 2010. Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2:1324–47
  • Thit A, Selck H, Bjerregaard HF. 2013. Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): effects on proliferation, cell cycle progression and cell death. Toxicol In Vitro 27:1596–601
  • Triboulet S, Aude-Garcia C, Carrière M, Diemer H, Proamer F, Habert A, et al. 2013. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses. Mol Cell Proteomics 12:3108–22
  • Wolpert L, Gustafson T. 1961. Studies on the cellular basis of morphogenesis of the sea urchin embryo. Development of the skeletal pattern. Exp Cell Res 25:311–25
  • Wu B, Torres-Duarte C, Cole B, Cherr GN. 2015. Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: their role as chemosensitizers. Environ Sci Technol 49:5760–70
  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–34
  • Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, et al. 2011. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5:1223–35
  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–68

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.