1,041
Views
45
CrossRef citations to date
0
Altmetric
Short Communication

Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans

, , , , , , & show all
Pages 831-835 | Received 29 Jul 2015, Accepted 16 Oct 2015, Published online: 11 Nov 2015

References

  • Artal-Sanz M, Samara C, Syntichaki P, Tavernarakis N. 2006. Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J Cell Biol 173:231–9
  • AshaRani PV, Hande MP, Valiyaveettil S. 2009. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65
  • Baltazar GC, Guha S, Lu W, Lim J, Boesze-Battaglia K, Laties AM, et al. 2012. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS One 7:e49635
  • Boyd WA, Smith MV, Freedman JH. 2012. Caenorhabditis elegans as a model in developmental toxicology. Methods Mol Biol 889:15–24
  • Caballero-Diaz E, Pfeiffer C, Kastl L, Rivera-Gil P, Simonet B, Valcarcel M, et al. 2013. The toxicity of silver nanoparticles depends on their uptake by cells and thus on their surface chemistry. Part Part Syst Char 30:1079–85
  • Campbell EM, Fares H. 2010. Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC Cell Biol 11:40
  • Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczynska A, Chwastowska J, et al. 2012. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 32:920–8
  • Elsaesser A, Howard CV. 2012. Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–37
  • Frohlich E, Meindl C, Roblegg E, Ebner B, Absenger M, Pieber TR. 2012. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity. Part Fibre Toxicol 9:26
  • Gao HL, Yang Z, Zhang S, Cao SJ, Shen S, Pang ZQ, Jiang XG. 2013. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep 3:2534
  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11
  • Gorth DJ, Rand DM, Webster TJ. 2011. Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomedicine 6:343–50
  • Grant B, Zhang YH, Paupard MC, Lin SX, Hall D, Hirsh D. 2001. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat Cell Biol 3:573–9
  • Hafeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D. 2009. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6:1417–28
  • Hauck TS, Ghazani AA, Chan WC. 2008. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153–9
  • Hermann GJ, Schroeder LK, Hieb CA, Kershner AM, Rabbitts BM, Fonarev P, et al. 2005. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16:3273–88
  • Hersh BM, Hartwieg E, Horvitz HR. 2002. The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc Natl Acad Sci USA 99:4355–60
  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–83
  • Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, et al. 2014. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9:e102108
  • Iversen TG, Skotland T, Sandvig K. 2011. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–85
  • Kenzaoui BH, Bernasconi CC, Guney-Ayra S, Juillerat-Jeanneret L. 2012. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J 441:813–21
  • Khan FR, Misra SK, Bury NR, Smith BD, Rainbow PS, Luoma SN, Valsami-Jones E. 2015. Inhibition of potential uptake pathways for silver nanoparticles in the estuarine snail Peringia ulvae. Nanotoxicology 9:493–501
  • Kim S, Choi IH. 2012. Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages. Yonsei Med J 53:654–7
  • Lem KW, Choudhury A, Lakhani AA, Kuyate P, Haw JR, Lee DS, et al. 2012. Use of nanosilver in consumer products. Recent Pat Nanotechnol 6:60–72
  • Lenaerts V, Nagelkerke JF, Vanberkel TJC, Couvreur P, Grislain L, Roland M, Speiser P. 1984. In vivo uptake of polyisobutyl cyanoacrylate nanoparticles by rat-liver kupffer, endothelial, and parenchymal-cells. J Pharm Sci 73:980–2
  • Lewis JA, Fleming JT. 1995. Basic culture methods. In: Epstein HF, Shakes DC, eds. Caenorhabditis elegans: modern biological analysis of an organism. California: Academic Press, 4–27
  • Lin SX, Grant B, Hirsh D, Maxfield FR. 2001. Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat Cell Biol 3:567–72
  • Lunov O, Syrovets T, Loos C, Beil J, Delecher M, Tron K, et al. 2011. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5:1657–69
  • McGhee JD. 2007. The C. elegans intestine. WormBook: The Online Review of C. elegans Biology. http://www.ncbi.nlm.nih.gov/books/NBK19717/. Created: May 3, 2007
  • Meyer JN, Lord CA, Yang XYY, Turner EA, Badireddy AR, Marinakos SM, et al. 2010. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–50
  • Miao AJ, Luo ZP, Chen CS, Chin WC, Santschi PH, Quigg A. 2010. Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5:e15196
  • Rabbitts BM, Ciotti MK, Miller NE, Kramer M, Lawrenson AL, Levitte S, et al. 2008. glo-3, a Novel Caenorhabditis elegans gene, is required for lysosome-related organelle biogenesis. Genetics 180:857–71
  • Rejman J, Bragonzi A, Conese M. 2005. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther 12:468–74
  • Roh HC, Collier S, Guthrie J, Robertson JD, Kornfeld K. 2012. Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab 15:88–99
  • Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, et al. 2014. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6:7052–61
  • Sato M, Sato K, Fonarev P, Huang CJ, Liou W, Grant BD. 2005. Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol 7:559 U7
  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM. 2011. Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5:432–44
  • Sun T, Wang XW, Lu Q, Ren HY, Zhang H. 2011. CUP-5, the C. elegans ortholog of the mammalian lysosomal channel protein MLN1/TRPML1, is required for proteolytic degradation in autolysosomes. Autophagy 7:1308–15
  • Tsyusko OV, Unrine JM, Spurgeon D, Blalock E, Starnes D, Tseng M, et al. 2012. Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Environ Sci Technol 46:4115–24
  • Vacha R, Martinez-Veracoechea FJ, Frenkel D. 2011. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11:5391–5
  • Wang HY, Wu LX, Reinhard BM. 2012. Scavenger receptor mediated endocytosis of silver nanoparticles into J774A.1 macrophages is heterogeneous. ACS Nano 6:7122–32
  • Williams PL, Dusenbery DB. 1988. Using the nematode Caenorhabditis-elegans to predict mammalian acute lethality to metallic salts. Toxicol Ind Health 4:469–78
  • Yang XY, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN. 2012. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–27
  • Yang XY, Jiang CJ, Hsu-Kim H, Badireddy AR, Dykstra M, Wiesner M, et al. 2014. Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ Sci Technol 48:3486–95
  • Zhang LW, Monteiro-Riviere NA. 2009. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 110:138–55
  • Zhang SL, Li J, Lykotrafitis G, Bao G, Suresh S. 2009. Size-dependent endocytosis of nanoparticles. Adv Mater Weinheim 21:419–24
  • Zhang YH, Grant B, Hirsh D. 2001. RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell 12:2011–21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.