223
Views
34
CrossRef citations to date
0
Altmetric
Original Article

Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha

, , , , , , , , & show all
Pages 935-944 | Received 13 Mar 2015, Accepted 17 Jan 2016, Published online: 08 Mar 2016

References

  • Arab K, Steghens JP. 2004. Plasma lipid hydroperoxides measurement by an automated xylenol orange method. Anal Biochem 325:158–63.
  • Asati A, Santra S, Kaittanis C, Perez JM. 2010. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4:5321–31.
  • Auffan M, Masion A, Labille J, Diot MA, Liu W, Olivi L, et al. 2014a. Long-term aging of a CeO(2) based nanocomposite used for wood protection. Environ Pollut 188:1–7.
  • Auffan M, Tella M, Santaella C, Brousset L, Paillès C, Barakat M, et al. 2014b. An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems. Sci Rep 4:5608.
  • Baker, SM ,Levinton JS, Kurdziel JP, Shumway SE. 1998. Selective feeding and biodeposition by zebra mussels and their relation to changes in phytoplankton composition and seston load. J Shellfish Res 17:1207–13.
  • Baker TJ, Tyler CR, Galloway TS. 2014. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–71.
  • Beer RF, Sizer IW. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–40.
  • Blanchette B, Feng X, Singh BR. 2007. Marine glutathione-S-transferases. Mar Biotechnol 9:513–42.
  • Bour A, Mouchet F, Silvestre J, Gauthier L, Pinelli E. 2015. Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater 283:764–77.
  • Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–31.
  • Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G. 2012. Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21.
  • Canesi L, Fabbri R, Gallo G, Vallotto D, Marcomini A, Pojana G. 2010. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat Toxicol 100:168–77.
  • Cheng TC. 1981. 8. Bivalves. In: Ratcliffe NA & Rowley AF, eds. Invertebrate Blood Cells. London: Academic Press.
  • Cherian MG. 1994. The significance of the nuclear and cytoplasmic localization of metallothionein in human liver and tumor cells. Environ Health Perspect 102:131–5.
  • Ciacci C, Canonico B, Bilaniĉovă D, Fabbri R, Cortese K, Gallo G, et al. 2012. Immunomodulation by different types of N-oxides in the hemocytes of the marine Bivalve mytilus galloprovincialis. PLoS One 7:e36937.
  • Ciofani G, Genchi GG, Mazzolai B, Mattoli V. 2014. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta BBA 1840:495–506.
  • Coen WMD, Janssen CR. 1997. The use of biomarkers in Daphnia magna toxicity testing. IV. Cellular Energy Allocation: a new methodology to assess the energy budget of toxicant-stressed Daphnia populations. J Aquat Ecosyst Stress Recovery 6:43–55.
  • Collin B, Auffan M, Johnson AC, Kaur I, Keller AA, Lazareva A, et al. 2014a. Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ Sci Nano 1:533–48.
  • Collin B, Oostveen E, Tsyusko OV, Unrine JM. 2014b. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280–9.
  • Conway JR, Hanna SK, Lenihan HS, Keller AA. 2014. Effects and Implications of trophic transfer and accumulation of CeO2 nanoparticles in a marine mussel. Environ Sci Technol 48:1517–24.
  • Cornelis G, Ryan B, McLaughlin MJ, Kirby JK, Beak D, Chittleborough D. 2011. Solubility and batch retention of CeO2 nanoparticles in soils. Environ Sci Technol 45:2777–82.
  • Couleau N, Techer D, Pagnout C, Jomini S, Foucaud L, Laval-Gilly P, et al. 2012. Hemocyte responses of Dreissena polymorpha following a short-term in vivo exposure to titanium dioxide nanoparticles: preliminary investigations. Sci Total Environ 438:490–7.
  • Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ. 2007. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28:1918–25.
  • Doyen P, Bigot A, Vasseur P, Rodius F. 2008. Molecular cloning and expression study of pi-class glutathione S-transferase (pi-GST) and selenium-dependent glutathione peroxidase (Se-GPx) transcripts in the freshwater bivalve Dreissena polymorpha. Comp Biochem Physiol Part C Toxicol Pharmacol 147:69–77.
  • Elliott P, Aldridge DC, Moggridge GD. 2008. Zebra mussel filtration and its potential uses in industrial water treatment. Water Res 42:1664–74.
  • Erel O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–85.
  • Garaud M, Trapp J, Devin S, Cossu-Leguille C, Pain-Devin S, Felten V, Giamberini L. 2015. Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli. Aquat Toxicol 158:63–74.
  • García-Negrete CA, Blasco J, Volland M, Rojas TC, Hampel M, Lapresta-Fernández A, et al. 2013. Behaviour of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations. Environ Pollut 174:134–41.
  • Giamberini L, Pihan JC. 1997. Lysosomal changes in the hemocytes of the freshwater mussel Dreissena polymorpha experimentally exposed to lead and zinc. Dis Aquat Organ 28:221–7.
  • Guerlet E, Vasseur P, Giambérini L. 2010. Spatial and temporal variations of biological responses to environmental pollution in the freshwater zebra mussel. Ecotoxicol Environ Saf 73:1170–81.
  • Kurelec B, Smital T, Pivèeviæ B, Eufemia N, Epel D. 2000. Multixenobiotic resistance, P-glycoprotein, and chemosensitizers. Ecotoxicology 9:307–27.
  • Liu W, Rose J, Plantevin S, Auffan M, Bottero JY, Vidaud C. 2013. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale 5:1658–68.
  • Marigómez I, Soto M, Cajaraville MP, Angulo E, Giamberini L. 2002. Cellular and subcellular distribution of metals in molluscs. Microsc Res Tech 56:358–92.
  • Minguez L, Boiché A, Sroda S, Mastitsky S, Brulé N, Bouquerel J, Giambérini L. 2012. Cross-effects of nickel contamination and parasitism on zebra mussel physiology. Ecotoxicology 21:538–47.
  • Montes MO, Hanna SK, Lenihan HS, Keller AA. 2012. Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225:139–45.
  • Moore MN. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–76.
  • Morton B. 1969. Studies on the biology of Dreissena polymorpha Pall II. Correlation of the rhythms of adductor activity, feeding, digestion and excretion. J Molluscan Stud 38:401–14.
  • O’Brien NJ, Cummins EJ. 2011. A risk assessment framework for assessing metallic nanomaterials of environmental concern: aquatic exposure and behavior. Risk Anal 31:706–26.
  • Osman AM, van den Heuvel H, van Noort PCM. 2007. Differential responses of biomarkers in tissues of a freshwater mussel, Dreissena polymorpha, to the exposure of sediment extracts with different levels of contamination. J Appl Toxicol 27:51–9.
  • Pain-Devin S, Cossu-Leguille C, Geffard A, Giambérini L, Jouenne T, Minguez L, et al. 2014. Towards a better understanding of biomarker response in field survey: a case study in eight populations of zebra mussels. Aquat Toxicol 155:52–61.
  • Palais F. 2011. Potentiel informatif des réponses enzymatiques digestives dans l’évaluation des effets d’un stress toxique sur l’état physiologique des invertébrés aquatiques : étude de cas chez un bivalve d’eau douce : Dreissena polymorpha. PhD Reims.
  • Park EJ, Choi J, Park YK, Park K. 2008. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100.
  • Patil S, Sandberg A, Heckert E, Self W, Seal S. 2007. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–7.
  • R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/.
  • Singh S, Dosani T, Karakoti AS, Kumar A, Seal S, Self WT. 2011. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 32:6745–53.
  • Singh S, Kumar A, Karakoti A, Seal S, Self WT. 2010. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst 6:1813–20.
  • Sprung M, Rose U. 1988. Influence of food size and food quantity on the feeding of the mussel Dreissena polymorpha. Oecologia 77:526–32.
  • Sroda S, Cossu-Leguille C. 2011. Seasonal variability of antioxidant biomarkers and energy reserves in the freshwater gammarid Gammarus roeseli. Chemosphere 83:538–44.
  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B. 2014. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76.
  • Székely GJ, Rizzo ML. 2005. A new test for multivariate normality. J Multivar Anal 93:58–80.
  • Tamilmani S, Shan J, Huang W, Raghavan S, Small R, Shang C, Scott B. 2003. Interaction between ceria and hydroxylamine. In: Symposium on chemical-Mechanical Planrization location, San Francisco, CA, April 22–24, 2003. doi:10.1557/PROC-767-F3.3
  • Tella M, Auffan M, Brousset L, Issartel J, Kieffer I, Pailles C, et al. 2014. Transfer, transformation, and impacts of ceria nanomaterials in aquatic mesocosms simulating a pond ecosystem. Environ Sci Technol 48:9004–13.
  • Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Smagghe G, Janssen CR. 2011. Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ Pollut 159:970–6.
  • Viarengo A, Nott JA. 1993. Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comp Biochem Physiol Part C Comp Pharmacol 104:355–72.
  • Ward JE, Kach DJ. 2009. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res 68:137–42.
  • Ward JE, Shumway SE. 2004. Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Biol Ecol 300:83–130.
  • Zhang P, He X, Ma Y, Lu K, Zhao Y, Zhang Z. 2012a. Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model. Chemosphere 89:530–5.
  • Zhang P, Ma Y, Zhang Z, He X, Zhang J, Guo Z, et al. 2012b. Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6:9943–50.
  • Zhong H, Wang WX. 2006. Sediment-bound inorganic Hg extraction mechanisms in the gut fluids of marine deposit feeders. Environ Sci Technol 40:6181–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.