791
Views
44
CrossRef citations to date
0
Altmetric
Review Article

Safety and toxicity of nanomaterials for ocular drug delivery applications

, , , &
Pages 836-860 | Received 23 Dec 2015, Accepted 08 Feb 2016, Published online: 30 Mar 2016

References

  • Abrego G, Alvarado H, Souto EB, Guevara B, Bellowa LH, Parra A, et al. 2015. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. Eur J Pharm Biopharm J Biopharm 95:261–70.
  • Aksungur P, Demirbilek M, Denkbas EB, Vandervoort J, Ludwig A, Unlu N. 2011. Development and characterization of cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake and kinetic studies. J Control Release 151:286–94.
  • Almeida H, Amaral MH, Lobao P, Lobo JMS. 2014. In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today 19:400–12.
  • Anayol MA, Toklu Y, Kamberoglu EA, Raza S, Arifoglu HB, Simavli H, et al. 2014. Short-term effects of intravitreal triamcinolone acetonide injection on ocular blood flow evaluated with color Doppler ultrasonography. Int J Ophthalmol 7:811–15.
  • Andrei F, Peptu CA, Popa M, Desbrieres J, Peptu C, Gardikiotis F, et al. 2015. Formulation and evaluation of cefuroxim loaded submicron particles for ophthalmic delivery. Int J Pharm 493:16–29.
  • Angelopoulou A, Voulgari E, Diamanti EK, Gournis D, Avgoustakis K. 2015. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel. Eur J Pharm Biopharm 93:18–26.
  • Aoshima H, Saitoh Y, Ito S, Yamana S, Miwa N. 2009. Safety evaluation of highly purified fullerenes (HPFs): based on screening of eye and skin damage. J Toxicol Sci 34:555–62.
  • Azar DT. 2006. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing. Trans Am Ophthalmol Soc 104:264–302.
  • Badawi AA, El-Laithy HM, El Qidra EK, Mofty HE, EI Dally M. 2008. Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 31:1040–9.
  • Bajwa N, Mehra NK, Jain K, Jain NK. 2015a. Pharmaceutical and biomedical applications of quantum dots. Artif Cells Nanomed Biotechnol. doi: 10.3109/21691401.2015.1052468.
  • Bajwa N, Mehra NK, Jain K, Jain NK. 2015b. Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized quantum dots. Artif Cells Nanomed Biotechnol. doi: 10.3109/21691401.2015.1102740.
  • Barile FA. 2010. Validating and troubleshooting ocular in vitro toxicology tests. J Pharmacol Toxicol Methods 61:136–45.
  • Bhatta RS, Chandasana H, Chhonker YS, Rathi C, Kumar D, Mitra K, Shukla PK. 2012. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharm 432:105–12.
  • Bochot A, Fattal E. 2012. Liposomes for intravitreal drug delivery: a state of the art. J Control Release 161:628–34.
  • Boczkowski J, Lanone S. 2012. Respiratory toxicities of nanomaterials – a focus on carbon nanotubes. Adv Drug Deliv Rev 64:1694–9.
  • Bozukova D, Pagnoulle C, Jerome R, Jerome C. 2010. Polymers in modern ophthalmic implants-historical background and recent advances. Mat Sci Eng R 69:63–83.
  • Cai D, Gao W, He B, Dai W, Zhang H, Wang X, et al. 2014. Hydrophobic penetrating peptide PFVYLi-modified stealth liposomes for doxorubicin delivery in breast cancer therapy. Biomaterials 35:2283–94.
  • Chen D, Dougherty CA, Zhu K, Hong H. 2015. Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery. J Control Release 210:230–45.
  • Chen Y, Hu X, Sun J, Zhou O. 2015. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology. doi: 10.3109/17435390.2015.1005032.
  • Chetoni P, Burgalassi S, Monti D, Najarro M, Boldrini E. 2007. Liposome-encapsulated mitomycin C for the reduction of corneal healing rate and ocular toxicity. J Drug Deliv Sci Technol 17:43–8.
  • Chetoni P, Monti D, Tampucci S, Matteoli B, Ceccherini-Nelli L, Subissi A, Burgalassi S. 2015. Liposomes as a potential ocular delivery system of distamycin A. Int J Pharm 492:120–6.
  • Conley SM, Naash MI. 2010. Nanoparticles for retinal gene therapy. Prog Retin Eye Res 29:376–97.
  • Coursey TG, Henriksson JT, Marcano DC, Shin CS, Isenhart LC, Ahmed F, et al. 2015. Dexamethasone nanowafer as an effective therapy for dry eye disease. J Control Release 213:168–74.
  • Das S, Bellare JR, Banerjee R. 2012. Protein based nanoparticles as platforms for aspirin delivery for ophthalmologic applications. Colloids Surf B Biointerfaces 93:161–8.
  • Daull P, Lallemand F, Garrigue JS. 2013. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J Pharm Pharmacol 66:531–41.
  • De la Fuente M, Seijo B, Alonso MJ. 2008. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49:2016–24.
  • Desai PN, Yuan Q, Yang H. 2010. Synthesis and characterization of photocurable polyamidoamine dendrimer hydrogels as a versatile platform for tissue engineering and drug delivery. Biomacromolecules 11:666–73.
  • Devadasu VR, BHardwaj V, Kumar MNV. 2013. Can controversial nanotechnology promise drug delivery? Chem Rev 113:1686–735.
  • Diebold Y, Calonge M. 2010. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 29:596–609.
  • Dilbaghi N, Kaur H, Ahuja M, Kumar S. 2013. Evaluation of tropicamide-loaded tamarind seed xyloglucan nanoaggregates for ophthalmic delivery. Carbohydr Polym 94:286–91.
  • Dong P, Guan Y, Yang J, He M, Wan C. 2000. Fundus microvascular flow monitoring during retrograde cerebral perfusion: an experimental study. Ann Thorac Surg 70:1478–82.
  • Draize JH, Woodard G, Calvery HO. 1994. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 82:377–90.
  • Du J, Wang S, You H, Zhao X. 2013. Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Environ Toxicol Pharmacol 36:451–62.
  • Duan Y, Cai X, Du H, Zhai G. 2015. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces 128:322–30.
  • Ema M, Matsuda A, Kobayashi N, Naya M, Nakanishi J. 2011. Evaluation of dermal and eye irritation and skin sensitization due to carbon nanotubes. Regul Toxicol Pharmacol 61:276–81.
  • Fernandez-Ferreiro A, Barcia MG, Martinez MG, Prado AV, Lema I, Argibay B, et al. 2015. In vitro and in vivo ocular safety and eye surface permanence determination by direct and magnetic resonance imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur J Pharm Biopharm 94:342–51.
  • Fitzpatrick SD, Mazumder MAJ, Muirhead B, Sheardown H. 2012. Development of injectable, resorbable drug-releasing copolymer scaffolds for minimally invasive sustained ophthalmic therapeutics. Acta Biomater 8:2517–28.
  • Fuller JR, Bevin TH, Molteno AC, Vote BJ, Herbison P. 2002. Anti-inflammatory fibrosis suppression in threatened trabeculectomy bleb failure produces good long term control of intraocular pressure without risk of sight threatening complications. Br J Ophthalmol 86:1352–4.
  • Gallarate M, Chirio D, Bussano R, Peira E, Battaglia L, Baratta F, Trotta M. 2013. Development of O/W nanoemulsions for ophthalmic administration of timolol. Int J Pharm 440:126–34.
  • Gan L, Gan Y, Zhu C, Zhang X, Zhu J. 2009. Novel micro-emulsion in situ electrolyte-triggered gelling systems for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results. Int J Pharm 365:143–9.
  • Garcia-Fernandez MJ, Tabary N, Martel B, Cazaux F, Oliva A, Taboada, et al. 2013. Pol-(cyclo) dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohydr Polym 98:1343–52.
  • Griffith JF, Nixon GA, Bruce RD, Reer PJ, Bannan EA. 1980. Dose–response studies with chemical irritants in the albino rabbit eye as a basis for selecting optimum testing conditions for predicting hazard to the human eye. Toxicol Appl Pharmacol 55:501–13.
  • Guerra J, Herrero MA, Carrion B, Perez-Martinez FC, Lucio M, Rubio N, et al. 2012. Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon 50:2832–44.
  • Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D. 2010. Liposomes as an ocular delivery system of fluconazole: in vitro studies. Acta Ophthalmol 88:901–4.
  • Halim Mohamed MA, Mahmoud AA. 2011. Formulation of indomethacin eye drops via complexation with cyclodextrins. Curr Eye Res 36:208–16.
  • Hamalainen KM, Kananen K, Auriola S, Kontturi K, Urtti A. 1997. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci 38:627–34.
  • Hathout RM, Mansour S, Mortada ND, Guinedi AS. 2007. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech 8:E1–12.
  • Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Beuschel SL, Butnor KJ, et al. 2010. Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model. Ann N Y Acad Sci 1203:7–14.
  • Hironaka K, Inokuchi Y, Fujisawa T, Shimazaki H, Akane M, Tozuka Y, et al. 2011. Edaravone-loaded liposomes for retinal protection against oxidative stress-induced retinal damage. Eur J Pharm Biopharm 79:119–25.
  • Holden CA, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB, Yang H. 2012. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine 8:776–83.
  • Hsueh PY, Edman MC, Sun G, Shi P, Xu S, Lin Y, et al. 2015. Tear-mediated delivery of nanoparticles through transcytosis of the lacrimal gland. J Control Release 208:2–13.
  • Huang W, Collette W, Twamley M, Aguirre SA, Sacaan A. 2015. Application of electroretinography (ERG) in early drug development for assessing retinal toxicity in rats. Toxicol Appl Pharmacol 289:525–33.
  • http://www.drugs.com/restasis.html. Accessed on 13 December 2015.
  • Huczko A, Lange H, Calko E, Grubek-Jaworska H, Droszcz P. 2001. Physiological testing of carbon nanotubes: are they asbestos-like? Fullerene Sci Technol 9:251–4.
  • Huhtala A, Salminen L, Tahti H, Uusitalo H. 2008. Corneal models for the toxicity testing of drugs and drug releasing materials. In: Ashammakhi N, ed. Topics in Multifunctional Biomaterials and Devices, 1–24. in press, Available at: http://www.oulu.fi/spareparts/ebook_topics_multifunctional/abstracts/huhtala.pdf
  • Ibrahim HK, El-Leithy IS, Makky AA. 2010. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm 7:576–85.
  • Jain AK, Mehra NK, Lodhi N, Dubey V, Mishra DK, Jain PK, Jain NK. 2007. Carbon nanotubes and their toxicity. Nanotoxicology 1:167–97.
  • Jain K, Mehra NK, Jain NK. 2014. Potentials and emerging trends in nanopharmacology. Curr Opin Pharmacol 15:97–106.
  • Jain K, Mehra NK, Jain NK. 2015. Nanotechnology in drug delivery: safety and toxicity issues. Curr Pharm Des 21:4252–61.
  • Jaiswal M, Kumar M, Pathak K. 2015. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf B Biointerfaces 130:23–30.
  • Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. 2010. Silver nano – a trove for retinal therapies. J Control Release 145:76–90.
  • Kapoor Y, Chauhan A. 2008. Ophthalmic delivery of cyclosporine A from Brij-97 microemulsion and surfactant-laden p-HEMA hydrogels. Int J Pharm 361:222–9.
  • Kapoor Y, Thomas JC, Tan G, John VT, Chauhan A. 2009. Surfactant-laden soft contact lenses for extended delivery of ophthalmic drugs. Biomaterials 30:867–78.
  • Kaur IP, Kakkar S. 2014. Nanotherapy for posterior eye diseases. J Control Release 193:100–12.
  • Kayat J, Gajbhiye V, Tekade RK, Jain NK. 2011. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine 7:40–9.
  • Kim YC, Oh KH, Edelhauser HF, Prausnitz MR. 2015. Formulation to target delivery to the ciliary body and choroid via the suprachoroidal space of the eye using microneedles. Eur J Pharm Biopharm. 95(Pt B):398–406.
  • Kirchhof S, Goepferich AM, Brandl FP. 2015. Hydrogels in ophthalmic applications. Eur J Pharm Biopharm. 95(Pt B):227–38.
  • Kishore AS, Surekha PS, Murthy PB. 2009. Assessment of the dermal and ocular irritation potential of multi-walled carbon nanotubes by using in vitro and in vivo methods. Toxicol Lett 191:268–74.
  • Kjellstrom U, Andreasson S, Ponjavic V. 2014. Attenuation of the retinal nerve fibre layer and reduced retinal function assessed by optical coherence tomography and full-field electroretinography in patients exposed to vigabatrin medication. Acta Ophthalmol 92:149–57.
  • Kompella UB, Amrite AC, Ravi RP, Durazo SA. 2013. Nanomedicines for back of the eye drug delivery, gene delivery and imaging. Prog Retin Eye Res 36:172–98.
  • Korenfield MS, Silverstein SM, Cooke DL, Vogel R, Crockett RS. 2009. Difluprednate ophthalmic emulsion 0.05% for postoperative inflammation and pain. J Cataract Refract Surg 35:26–34.
  • Koz OG, Ozhuy S, Tezel GG, Karaman N, Unlu N, Yarangumeli A, Kural G. 2007. The effect of paclitaxel on conjunctival wound healing: a pilot study. J Glaucoma 16:610–15.
  • Kozobolis VP, Christodoulakis EV, Tzanakis N, Zacharopoulos I, Pallikaris IG. 2002. Primary deep sclerectomy versus primary deep sclerectomy with the use of mitomycin C in primary open-angle glaucoma. J Glaucoma 11:287–93.
  • Kuo TR, Lee CF, Lin SJ, Dong CY, Chen CC, Tan HY. 2011. Studies of intracorneal distribution and cytotoxicity of quantum dots: risk assessment of eye exposure. Chem Res Toxicol 24:253–61.
  • Lacerda L, Russier J, Pastorin G, Herrero MA, Venturelli E, Dumortier H, et al. 2012. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 33:333–43.
  • Lajunen T, Viitala L, Kontturi LS, Laaksonen T, Liang H, Vuorimaa-Laukkanen E, et al. 2015. Light induced cytosolic drug delivery from liposomes with gold nanoparticles. J Control Release 203:85–98.
  • Lallemand F, Duall P, Benita S, Buggage R, Garrigue JS. 2012. Successfully improving ocular drug delivery using the cationic nanoemulsion, Novasorb. J Drug Deliv 2012:604204.
  • Lee EH, Kim JK, Lim JS, Lim SJ. 2015. Enhancement of indocyanine green stability and cellular uptake by incorporating cationic lipid into indocyanine green-loaded nanoemulsions. Colloids Surf B Biointerfaces 136:305–13.
  • Leonardi A, Bucolo C, Romano GL, Platania CBM, Drago F, Puglisi G, Pignaello R. 2014. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int J Pharm 470:133–40.
  • Lezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM. 2012. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33:979–88.
  • Li J, Wu L, Wu W, Wang B, Wang Z, Xin H, Xu Q. 2013. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm 455:75–84.
  • Li N, Zhuang C, Wang M, Sun X, Nie S, Pan W. 2009. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm 379:131–8.
  • Liang H, Baudouin C, Duall P, Garrigue JS, Brignole-Baudouin F. 2012. Ocular safety of cationic emulsion of cyclosporine in an in vitro corneal wound healing model and an acute in vivo rabbit model. Mol Vis 18:2195–204.
  • Lin M, Zou R, Shi H, Yu S, Li X, Guo R, et al. 2015. Ocular biocompatibility evaluation of hydroxyl-functionalized graphene. Mater Sci Eng C Mater Biol Appl 50:300–8.
  • Liu K, Wang Y, Li H, Duan Y. 2015. A facile one-pot synthesis of starch functionalized graphene as nano-carrier for pH-sensitive and starch-mediated drug delivery. Colloids Surf B Biointerfaces 128:86–93.
  • Lopes JF, Moster MR, Wilson RP, Altangerel U, Alvim HS, Tong MG, et al. 2006. Subconjunctival sodium hyaluronate 2.3% in trabeculectomy: a prospective randomized clinical trial. Ophthalmology 113:756–60.
  • Lu Y, GuoXing L, Shu Z, Fei S, XiaoJie H, Qian Z, et al. 2013. Cytotoxicity and genotoxicity of multi-walled carbon nanotubes with human ocular cells. Mater Chem 58:2347–53.
  • Ludwig A. 2005. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–639.
  • Manna S, Banerjee RK, Augsburger JJ, Al-Rjoub MF, Donnell A, Correa ZM. 2015. Biodegradable chitosan and polylactic acid-based intraocular micro-implant for sustained release of methotrexate into vitreous: analysis of pharmacokinetic and toxicity in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 253:1297–305.
  • Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M. 2013. Graphene: promises, facts, opportunities and challenges in nanomedicine. Chem Rev 113:3407–24.
  • Marianecci C, Marzio LD, Rinaldi F, Celia C, Paolino D, Alhaique F, et al. 2014. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci 205:187–206.
  • Majdi JA, Qian H, Li Y, Langsner RJ, Shea KI, Agrawal A, et al. 2015. The use of time-lapse optical coherence tomography to image the effects of microapplied toxins on the retina. Invest Ophthalmol Vis Sci 56:587–97.
  • Mehra NK, Jain K, Jain NK. 2015a. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 20:750–6.
  • Mehra NK, Jain K, Jain NK. 2015b. Design of multifunctional nanocarriers for delivery of anti-cancer therapy. Curr Pharm Des 21:6157–64.
  • Mehra NK, Jain NK. 2015a. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting. J Drug Target. 24:294–308.
  • Mehra NK, Jain NK. 2015b. Cancer targeting propensity of folate conjugated surface engineered multi-walled carbon nanotubes. Colloids Surf B Biointerfaces 132:17–26.
  • Mehra NK, Jain NK. 2015c. One platform comparison of estrone and folic acid anchored surface engineered MWCNTs for doxorubicin delivery. Mol Pharm 12:630–43.
  • Mehra NK, Mishra V, Jain NK. 2014a. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials 35:1267–83.
  • Mehra NK, Palakurthi S. 2015. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today. doi: 10.1016/j.drudis.2015.11.011.
  • Mehra NK, Verma AK, Mishra PR, Jain NK. 2014b. The cancer targeting potential of D-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Biomaterials 35:4573–88.
  • Mishra V, Jain NK. 2014. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int J Pharm 461:380–90.
  • Miyawaki J, Yudasaka M, Azami T, Kubo Y, Iijima S. 2008. Toxicity of single-walled carbon nanohorns. ACS Nano 2:213–26.
  • Mody N, Tekade RK, Mehra NK, Chopdey P, Jain NK. 2014. Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential. AAPS PharmSciTech 15:388–99.
  • Moysidis SN, Alvarez-Delfin K, Peschansky VJ, Salero E, Weisman AD, Bartakova A, et al. 2015. Magnetic field-guided cell delivery with nanoparticle-loaded human corneal endothelial cells. Nanomedicine 11:499–509.
  • Myles ME, Neumann DM, Hill JM. 2005. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev 57:2063–79.
  • Nagai N, Ito Y. 2014. Therapeutic effects of gel ointments containing tranilast nanoparticles on paw edema in adjuvant-induced arthritis rats. Biol Pharm Bull 37:96–104.
  • Nagai N, Ito Y, Okamoto N, Shimomura Y. 2014. A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability. Toxicology 319:53–62.
  • Nair KL, Vidyanand S, James J, Kumar GS. 2012. Pilocarpine-loaded poly (dl-lactic-co-glycolic acid) nanoparticles as potential candidates for controlled drug delivery with enhanced ocular pharmacological response. J Appl Polym Sci 124:2030–6.
  • OECD (Organisation for Economic Co-operation and Development). 2002. OECD guideline for the testing of chemicals: acute eye irritation/corrosion (Test No. 405).
  • Oshima Y, Sakamoto T, Nakamura T, Tahara Y, Goto Y, Ishibashi T, Inomata H. 1999. The comparative benefits of glaucoma filtering surgery with an electric-pulse targeted drug delivery system demonstrated in an animal model. Ophthalmology 106:1140–6.
  • Pathak MK, Chhabra G, Pathak K. 2013. Design and development of a novel pH-triggered nanoemulsified in-situ ophthalmic gel of fluconazole: ex vivo transcorneal permeation, corneal toxicity and irritation testing. Drug Dev Ind Pharm 39:780–90.
  • Pattni BS, Chupin VV, Torchilin VP. 2015. New developments in liposomal drug delivery. Chem Rev 115:10938–66.
  • Peng D, Yu K, Zeng S, Li Y, Lin J, Wu Y, Zhou W. 1999. An experimental study on homoharringtonine liposome and glaucoma filtration surgery. Yan Ke Xue Bao 15:51–4.
  • Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. 2002. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen®. Eur J Pharm Sci 16:53–61.
  • Plange N, Remky A, Arend O. 2003. Colour Doppler imaging and fluorescein filling defects of the optic disc in normal tension glaucoma. Br J Ophthalmol 87:731–6.
  • Prausnitz MR, Noonan JS. 1998. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 87:1479–88.
  • Prow TW. 2010. Toxicity of nanomaterials to the eye. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:317–33.
  • Prow TW, Bhutto I, Kim SY, Grebe R, Merges C, McLeod S, et al. 2008. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 4:340–9.
  • Qiao Y, Qin G, Yu L. 2013. The triblock copolymers hydrogel through intracameral injection may be a new potential ophthalmic drug delivery with antiscarring drugs after glaucoma filtration surgery. Med Hypotheses 80:23–5.
  • Rai P, Lauande-Pimentel R, Barton K. 2005. Amniotic membrane as an adjunct to donor sclera in the repair of exposed glaucoma drainage devices. Am J Ophthalmol 140:1148–52.
  • Rajala A, Wang Y, Zhu Y, Ranjo-Bishop M, Ma JX, Mao C, Rajala RV. 2014. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett 14:5257–63.
  • Ratto F, Matteini P, Rossi F, Menabuoni L, Tiwari N, Kulkarni SK, Pini R. 2009. Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomedicine 5:143–51.
  • Roggeband R, York M, Pericoi M, Braun W. 2000. Eye irritation responses in rabbit and man after single application of equal volume of undiluted model liquid detergent products. Food Chem Toxicol 38:727–34.
  • Reimondez-Troitino S, Csaba N, Alonso MJ, de la Fuente M. 2015. Nanotherapies for the treatment of ocular diseases. Euro J Pharm Biopharm 95(Pt B):279–93.
  • Sasaki H, Karasawa K, Hironaka K, Tahara K, Tozuka Y, Takeuchi H. 2013. Retinal drug delivery using eyedrop preparations of poly-l-lysine-modified liposomes. Eur J Pharm Biopharm 83:364–9.
  • Sharma A, Tandon A, Tovey JCK, Gupta R, Robertson JD, Fortune JA, et al. 2011. Polyethylenimine-conjugated gold nanoparticles: gene transfer potential and low toxicity in the cornea. Nanomedicine 7:505–13.
  • Sharma P, Mehra NK, Jain K, Jain NK. 2015. Biomedical applications of carbon nanotubes: a critical review. Curr Drug Deliv 12 (In press).
  • Sharma R, Ahuja M, Kaur H. 2012. Thiolated pectin nanoparticles: preparation, characterization and ex vivo corneal permeation study. Carbohydr Polym 87:1606–10.
  • Sheikholeshlami P, Muirhead B, Baek DSH, Wang H, Zhao X, Sivakumaran D, et al. 2015. Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel. Exp Eye Res 137:18–31.
  • Soderstjerna E, Bauer P, Cedervall T, Abdshill H, Johansson F, Johansson UE. 2014. Silver and gold nanoparticles exposure to in vitro cultured retina-studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity. PLoS One 9:e105359.
  • Sosnik A, Neves J, Sarmento B. 2014. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog Polym Sci 39:2030–75.
  • Souza JG, Dias K, Silva SAM, de Rezende LCD, Rocha EM, Emery FS, Lopez RFV. 2015. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery. J Control Release 200:115–24.
  • Spataro G, Malecaze F, Turrin CO, Soler V, Duhayon C, Elena PP, et al. 2010. Designing dendrimers for ocular drug delivery. Eur J Med Chem 45:326–34.
  • Spitzer MS, Yoeruek E, Kaczmarek RT, Sierra A, Aisenbrey S, Grisanti S, et al. 2008. Sodium hyaluronate gels as a drug release system for corticosteroids: release kinetics and anti-proliferative potential for glaucoma surgery. Acta Ophthalmol 86:842–8.
  • Srivastava V, Gusain D, Sharma YC. 2015. Critical review on the toxicity of some widely used engineered nanoparticles. Ind Eng Chem Res 54:6209–33.
  • Taha EI, Ei-Anazi MH, El-Bagory IM, Bayomi MA. 2014. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J 22:231–9.
  • Tayel SA, El-ANabarawi MA, Tadros MI, Abd-Elsalam WH. 2013. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int J Pharm 443:293–305.
  • Tommaso CD, Torriglia A, Furrer P, Behar-Cohen F, Gurny R, Moller M. 2011. Ocular biocompatibility of novel cyclosporine A formulations based on methoxypoly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm 416:515–24.
  • Tripathi RC, Tfipathi BJ. 2005. Tissue plasminogen activator therapy for the eye. Br J Ophthalmol 89:1390–1.
  • Tuomela A, Liu P, Puranen J, Ronkko S, Laaksonen T, Kalesnykas G, et al. 2014. Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo. Int J Pharm 467:34–41.
  • Vandamme TF, Brobeck L. 2005. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102:23–38.
  • Varshocian R, Jeddi-Tehrani M, Mahmoudi AR, Khoshayand MR, Atyabi F, Sabzevari A, et al. 2013. The protective effect of albumin on bevacizumab activity and stability in PLGA nanoparticles intended for retinal and choroidal neovascularization treatments. Eur J Pharm Sci 50:341–52.
  • van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. 2007. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 26:57–77.
  • Volkov Y. 2015. Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem Biophys Res Commun. 468:419–27.
  • Wang W, Zhang J, Huang Y, Huang J, Jiang J. 2011. Clinical study on interferon treatment of early scarring in filtering bleb. Eye Sci 26:197–200.
  • Warsi MH, Anwar M, Garg V, Jain GK, Talegaonkar S, Ahmad FJ, Khar RK. 2014. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf B Biointerfaces 122:423–31.
  • Wilson SL, Ahearne M, Hopkinson A. 2015. An overview of current techniques for ocular toxicity testing. Toxicology 327:32–46.
  • Wong TT, Khaw PT, Aung T, Foster PJ, Htoon HM, Oen FT, et al. 2009. The Singapore 5-fluorouracil trabeculectomy study: effects on intraocular pressure control and disease progression at 3 years. Ophthalmology 116:175–84.
  • Wu YT, Willcox M, Zhu H, Stapleton F. 2015. Contact lens hygiene compliance and lens case contamination: a review. Cont Lens Anterior Eye 38:307–16.
  • Yamaguchi M, Yasueda S, Isowaki A, Yamamoto M, Kimura M, Inada K, Ohtori A. 2005. Formulation of an ophthalmic lipid emulsion containing an anti-inflammatory steroidal drug, difluprednate. Int J Pharm 301:121–8.
  • Yan L, Wang Y, Xu X, Zeng C, Hou J, Lin M, et al. 2012. Can graphene oxide cause damage to eyesight?. Chem Res Toxicol 25:1265–70.
  • Yan L, Li GX, Zhang S, Sun F, Huang X, Zhang Q, et al. 2013. Cytotoxicity and genotoxicity of multi-walled carbon nanotubes with human ocular cells. Chinese Sci Bull 58:2347–53.
  • Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. 2012. Hybrid dendrimers hydrogel/PLGA nanoparticles platform sustains drug delivery for one week and anti-glaucoma effects for four days following one-time topical administration. ACS Nano 6:7596–606.
  • Yang L, Wang F, Han H, Yang L, Zhang G, Fan Z. 2015. Functionalized graphene oxide as a drug carrier for loading pirfenidone in treatment of subarachnoid hemorrhage. Colloids Surf B Biointerfaces 129:21–9.
  • Yellepeddi VK, Vangara KK, Palakurthi S. 2013. Poly (amido) amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells. J Nanopart Res 15:1897.
  • Yin H, Gong C, Shi S, Liu X, Wei Y, Qian Z. 2010. Toxicity evaluation of biodegradable and thermosensitive PEG-PCL-PEG hydrogel as a potential in situ sustained ophthalmic drug delivery system. J Biomed Mater Res Part B: Appl Biomater 92:129–37.
  • Yuan X, Marcano DC, Shin CS, Hua X, Isenhart LC, Pflugfelder SC, Acharya G. 2015. Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS Nano 9:1749–58.
  • Zhang J, Wang S. 2009. Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerances, precorneal retention and anti-cataract effect. Int J Pharm 372:66–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.