205
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Event-related brain potentials in amyotrophic lateral sclerosis: A review of the international literature

, &
Pages 16-26 | Received 18 Dec 2008, Accepted 20 Mar 2009, Published online: 26 Feb 2010

References

  • Aran FA. Recherches sur une maladie non encore décrite du système musculaire (atrophie musculaire progressive). Arch Gèn Med. 1850; 24: 5–35
  • Aran FA. Recherches sur une maladie non encore décrite du système musculaire (atrophie musculaire progressive) (2e article-suite et fin). Arch Gèn Med. 1850; 24: 172–214
  • Okamoto K, Hirai S, Yamazaki T, Sun X, Nakazato Y. New ubiquitin-positive intraneuronal inclusions in the extramotor cortices in patients with amyotrophic lateral sclerosis. Neurosci Lett. 1991; 129: 233–6
  • Nagy D, Kato T, Kushner PD. Reactive astrocytes are widespread in the cortical grey matter of amyotrophic lateral sclerosis. J Neurosci Res. 1994; 38: 336–47
  • Geser F, Brandmeir NJ, Kwong LK, Martinez-Lage M, Elman L, McCluskey L, et al. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol. 2008; 65: 636–41
  • Zhang H, Tan CF, Mori F, Tanji K, Kakita A, Takahashi H, Wakabayashi K. TDP-43-immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol. 2008; 115: 115–22
  • Gallassi R, Montagna P, Ciardulli C, Lorusso S, Mussuto V. Cognitive impairment in motor neuron disease. Acta Neurol Scand. 1985; 71: 480–4
  • David AS, Gillham RA. Neuropsychological study of motor neuron disease. Psychosomatics. 1986; 27: 441–5
  • Ludolph AC, Langen KJ, Regard M, Herzog H, Kemper B. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychological and positron emission tomography study. Acta Neurol Scand. 1992; 85: 450–5
  • Abrahams S, Goldstein LH, Lloyd CM, Brooks DJ, Leigh PN. Cognitive deficits in non-demented amyotrophic lateral sclerosis patients: a neuropsychological investigation. J Neurol Sci 1995; 129(Suppl)54–5
  • Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1996; 61: 450–5
  • Abrahams S, Goldstein LH, Al-Chalabi A, Pickering A, Morris RG, Passingham RE, et al. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1997; 62: 464–72
  • Frank B, Haas J, Heinze HJ, Stark E, Münte TF. Relation of neuropsychologiocal and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups. Clin Neurol Neurosurg. 1997; 99: 79–86
  • Abrahams S, Leigh PN, Harvey A, Vythelingum GN, Grisé D, Goldstein LH. Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia. 2000; 38: 734–47
  • Barson FP, Kinsella GJ, Ong B, Mathers SE. A neuropsychological investigation of dementia in motor neuron disease (MND). J Neurol Sci. 2000; 180: 113
  • Heidler-Gary J, Hillis AE. Distinctions between the dementia in amyotrophic lateral sclerosis with frontotemporal dementia and the dementia of Alzheimer's disease. Amyotroph Lateral Scler. 2007; 8: 276–82
  • Waldemar G, Vorstrup S, Jensen TS, Johnsen A, Boysen G. Focal reductions of cerebral blood flow in amyotrophic lateral sclerosis: a [99mTc]-d,I-HMPAO SPECT study. J Neurol Sci. 1992; 107: 19–28
  • Abe K, Fujimura H, Toyooka K, Hazama T, Hirono N, Yorifuji S, et al. Single-photon emission computed tomographic investigation of patients with motor neuron disease. Neurology. 1993; 43: 1569–73
  • Kato S, Hayashi H, Yagishita A. Involvement of the frontotemporal lobe and limbic system in amyotrophic lateral sclerosis: as assessed by serial computed tomography and magnetic resonance imaging. J Neurol Sci. 1993; 116: 52–8
  • Kew JJM, Goldstein LH, Leigh PN, Abrahamas S, Cosgrave N, Passingham RE, et al. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. Brain. 1993; 116: 1399–423
  • Kew JJM, Leigh PN, Playford ED, Passingham RE, Goldstein LH, Frackowiak RS, et al. Cortical function in amyotrophic lateral sclerosis. Brain. 1993; 116: 665–80
  • Kiernan JA, Hudson AJ. Frontal lobe atrophy in motor neuron disease. Brain. 1994; 117: 747–57
  • Abrahams S, Goldstein LH, Kew JJM, Brooks DJ, Llooyd CM, Frith CD, et al. Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain. 1996; 119: 2105–20
  • Abrahams S, Goldstein LH, Simmons A, Brammer M, Williams SC, Giampietro V, et al. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain. 2004; 127: 1507–17
  • Abrahams S, Goldstein LH, Suckling J, Ng V, Simmons A, Chitinis X, et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J Neurol. 2005; 252: 321–31
  • Chang JL, Lomen-Hoerth C, Murphy J, Henry RG, Kramer JH, Miller BL, et al. A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology. 2005; 65: 75–80
  • Bak TH, Hodges JR. Cognition, language and behaviour in motor neuron disease: evidence of frontotemporal dysfunction. Dement Geriatr Cogn Disord. 1999; 10((Suppl 1))29–32
  • Ringholz GM, Greene SR. The relationship between amyotrophic lateral sclerosis and frontotemporal dementia. Curr Neurol Neurosci Rep. 2006; 6: 387–92
  • Spina S, Murrell JR, Huey ED, Wassermann EM, Pietrini P, Baraibar MA, et al. Clinicopathologic features of frontotemporal dementia with progranulin sequence variation. Neurology. 2007; 68: 820–7
  • Strong MJ. The syndromes of frontotemporal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2008; 27: 1–16
  • Strong MJ, Grace GM, Orange JB, Leeper HA, Menon R, Aere C. A prospective study of cognitive impairment in ALS. Neurology. 1999; 53: 1665–70
  • Neary D, Snowden JS, Mann DM. Cognitive change in motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). J Neurol Sci. 2000; 180: 15–20
  • Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schultz PE. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology. 2005; 65: 586–90
  • Talbot K, Ansorge O. Recent advances in the genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Common pathways in neurodegenerative disease. Human Mol Genet. 2006; 15: R182–7
  • Schymick JC, Yang Y, Andersen PM, Vonsattel JP, Greenway M, Momeni P, et al. Progranulin mutations and amyotrophic lateral sclerosis or amyotrophic lateral sclerosis-frontotemporal dementia phenotypes. J Neurol Neurosurg Psychiatry. 2007; 78: 754–6
  • López de Munain A, Alzualde A, Gorostidi A, Otaegui D, Ruiz-Martínez J, Indakoetxea B, et al. Mutations in progranulin gene: clinical, pathological, and ribonucleic acid expression findings. Biol Psychiatry. 2008; 63: 946–52
  • Martinaud O, Laquerrière A, Guyant-Maréchal L, Ahtoy P, Vera P, Sergeant N, et al. Frontotemporal dementia, motor neuron disease and tauopathy: clinical and neuropathological study in a family. Acta Neuropathol. 2005; 110: 84–92
  • Strong MJ, Yang W, Strong WL, Leystra-Lantz C, Jaffe H, Pant HC. Tau protein hyperphosphorylation in sporadic ALS with cognitive impairment. Neurology. 2006; 66: 1770–1
  • Kuzuhara S, Kokubo Y, Sasaki R, Narita Y, Yabana T, Hasegawa M, Iwatsubo T. Familial amyotrophic lateral sclerosis and Parkinsonism-dementia complex of the Kii Peninsula of Japan: clinical and neuropathological study and tau analysis. Ann Neurol. 2001; 49: 501–11
  • Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, et al. TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol. 2008; 63: 535–8
  • van Deerlin VM, Leverenz JB, Bekris LM, Bird TD, Yuan W, Elman LB, et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 2008; 7: 409–16
  • Gil R, Neau JP, Dary-Auriol M, Agbo C, Tantot AM, Ingrand P. Event-related auditory evoked potentials and amyotrophic lateral sclerosis. Arch Neurol. 1995; 52: 890–6
  • Westphal KP, Heinemann HA, Grözinger B, Kotchoubey BJ, Diekmann V, Becker W, Kornhuber HH. Bereitschaftspotential in amyotrophic lateral sclerosis (ALS): lower amplitudes in patients with hyperreflexia (spasticity). Acta Neurol Scand. 1998; 98: 15–21
  • Münte TF, Tröger M, Nusser I, Wieringa BM, Matzke M, Johannes S, Dengler R. Recognition memory deficits in amyotrophic lateral sclerosis assessed with event-related brain potentials. Acta Neurol Scand. 1998; 98: 110–5
  • Münte TF, Tröger M, Nusser I, Wieringa BM, Matzke M, Johannes S, Dengler R. Abnormalities of visual search behaviour in ALS patients detected with event-related potentials. Amyotroph Lateral Scler Other Motor Neuron Disord. 1999; 1: 21–7
  • Vieregge P, Wauschkuhn B, Heberlein R, Hagenah R, Verleger R. Selective attention is impaired in amyotrophic lateral sclerosis: a study of event-related EEG potentials. Brain Res Cogn Brain Res. 1999; 8: 27–35
  • Hanagasi HA, Gurvit IH, Ermutlu N, Kaptanoglu G, Karamursel S, Idrisoglu HA, et al. Cognitive impairment in amyotrophic lateral sclerosis: evidence from neuropsychological investigation and event-related potentials. Brain Res Cogn Brain Res. 2002; 14: 234–44
  • Paulus KS, Magnano I, Piras MR, Solinas MA, Solinas GF, Sau GF, Aiello I. Visual and auditory event-related potentials in sporadic amyotrophic lateral sclerosis. Clin Neurophysiol. 2002; 113: 853–61
  • Kotchoubey B, Lang S, Winter S, Birbaumer N. Cognitive processing in completely paralysed patients with amyotrophic lateral sclerosis. Eur J Neurol. 2003; 10: 551–8
  • Kotchoubey B, Dubischar A, Mack H, Kaiser J, Birbaumer N. Electrocortical and behavioural effects of chronic immobility on word processing. Cogn Brain Res. 2003; 17: 188–99
  • Raggi A, Consonni M, Iannaccone S, Perani D, Zamboni M, Sferrazza B, Cappa SF. Auditory event-related potentials in non-demented patients with sporadic amyotrophic lateral sclerosis. Clin Neurophysiol. 2008; 119: 342–50
  • Pinkhardt EH, Jürgens R, Becker W, Mölle M, Born J, Ludolph AC, Schreiber H. Signs of impaired selective attention in patients with amyotrophic lateral sclerosis. J Neurol. 2008; 255: 532–8
  • Pritchard WS. Psychophysiology of P300. Psychol Bull. 1981; 89: 506–40
  • Näätänen, R. Attention and brain function. Lawrence Erlbraum Associates Publisher. 1992
  • Rugg M, Coles MGH. Electrophysiology of mind: event-related brain potentials and cognition. Oxford University Press, OxfordU.K. 1995
  • Chiappa KH, Hill RA. Pattern-shift visual evoked potentials: interpretation. Evoked potentials in clinical medicine3rd edn, KH Chiappa. Lippincot – Raven Publishers, Philadelphia 1997; 95–130
  • Chiappa KH, Hill RA. Brainstem auditory evoked potentials: interpretation. Evoked potentials in clinical medicine3rd edn, KH Chiappa. Lippincot – Raven Publishers, Philadelphia 1997; 199–249
  • Chiappa KH, Hill RA. Short-latency somatosensory evoked potentials: interpretation. Evoked potentials in clinical medicine3rd edn, KH Chiappa. Lippincot – Raven Publishers, Philadelphia 1997; 341–400
  • Oken BS. Endogenous event-related potentials. Evoked potentials in clinical medicine3rd edn, KH Chiappa. Lippincot – Raven Publishers, Philadelphia 1997; 529–63
  • Sutton S, Baren M, Zubin J, John ER. Evoked potential correlates of stimulus uncertainty. Science. 1965; 150: 1187–8
  • Courchesne E, Hylliard S, Galambos R. Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalogr Clin Neurophysiol. 1975; 39: 131–43
  • Desmedt JE. P300 in serial tasks: an essential post-decision clousure mechanism. Prog Brain Res. 1981; 54: 682–6
  • Polich J, Criado JR. Neuropsychology and neuropharmacology of P3a and P3b. Int J Psycophysiol. 2006; 60: 172–85
  • Näätänen R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive functions. Behav Brain Sci. 1990; 13: 201–88
  • Hansen JC, Hillyard SA. Endogenous brain potentials associated with selective auditory attention. Electroencephal Clin Neurophysiol. 1980; 49: 277–90
  • Näätänen R. Processing negativity: an evoked-potential reflection of selective attention. Psychol Bull. 1982; 92: 605–40
  • Snyder E, Hillyard SA. Long-latency evoked potentials to irrelevant, deviant stimuli. Behav Biol. 1976; 16: 319–31
  • Walter WG, Cooper R, Aldridge VG, McCallum WC, Winter AL. The contingent negative variation: an electrical sign of sensory motor association and expectancy in the human brain. Nature. 1964; 230: 380–4
  • Kornhuber HH, Deecke L. Hirnpotentialanderungen bei Willkurbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflugers Arch Physiol. 1965; 284: 1–17
  • Gilden L, Vaughan HG, Costa LD. Summated human EEG potentials with voluntary movement. Electroencephal Clin Neurophysiol. 1966; 20: 433–8
  • Vaughan HG, Costa LD, Ritter W. Topography of the human motor potential. Electroencephal Clin Neurophysiol. 1968; 25: 1–10
  • Hallett M. Movement-related cortical potentials. Electroencephal Clin Neurophysiol. 1994; 34: 5–13
  • Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of selective attention in the human brain. Science. 1973; 182: 177–80
  • Mandler G, Goodman GO, Wilkes-Gibbs DL. The word-frequency paradox in recognition. Mem Cognit. 1982; 10: 33–42
  • Bostanov V, Kotchoubey B. Recognition of affective prosody: continuous wavelet measures of event-related brain potentials to emotional exclamations. Psychophysiology. 2004; 41: 259–68
  • Lang S, Kotchoubey B. Learning effects on event-related brain potentials. Neuroreport. 2000; 11: 3327–31
  • Bentin S, Kutas M, Hillyard SA. Electrophysiological evidence for task effects on semantic priming in auditory word processing. Psychophysiology. 1993; 30: 161–9
  • Hagoort P, Brown CM, Swaab TY. Lexical-semantic event-related potential effects in patients with left hemisphere lesions and aphasia and patients with right hemisphere lesions without aphasia. Brain. 1996; 119: 627–49
  • de Jong R, Wierda M, Mulder G, Mulder LJM. Use of partial stimulus information in response processing. J Exp Psychol Hum Percept Perform. 1998; 14: 682–92
  • Coles MGH. Modern mind-brain reading: psychophysiology, physiology, and cognition. Psychophysiology. 1989; 26: 251–69
  • Jablecki CK, Berry C, Leach J. Survival prediction in amyotrophic lateral sclerosis. Muscle Nerve. 1989; 12: 833–41
  • Hillel AD, Miller RM, Yorkston K, McDonald E, Norris FH, Konikow N. Amyotrophic Lateral Sclerosis Severity Scale. Neuroepidemiology. 1989; 8: 142–50
  • Bramon E, McDonald C, Croft RJ, Landau S, Filbey F, Gruzelier JH, et al. Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and family study. Neuroimage. 2005; 27: 960–8
  • Pekkonen E, Näätänen R. Variability and replicability of the mismatch negativity. Electroencephal Clin Neurophysiol. 1995; 96: 546–54
  • Kropp P, Kiewitt A, Göbel H, Vetter P, Gerber WD. Reliability and stability of contingent negative variation. Appl Psychophysiol Biofeedback. 2000; 25: 33–41
  • Lew HL, Gray M, Poole JH. Temporal stability of auditory event-related potentials in healthy individuals and patients with traumatic brain injury. J Clin Neurophysiol. 2007; 24: 392–7
  • Posner MI, Petersen SE. The attention system of the human brain. Ann Rev Neurosci. 1990; 13: 25–42
  • Münte TF, Ridao-Alonso ME, Preinfalk J, Jung A, Wieringa BM, Matzke M, et al. An electrophysiological analysis of altered cognitive functions in Huntington's disease. Arch Neurol. 1997; 54: 1089–98
  • Goodin DS, Aminoff MJ. Electrophysiological differences between subtypes of dementia. Brain. 1986; 109: 1103–13
  • Knight RT, Hillyard SA, Woods DL, Neville HJ. The effects of frontal cortex lesions on event-related potentials during auditory selective attention. Electroencephalogr Clin Neurophysiol. 1981; 52: 571–82
  • Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev. 1985; 65: 37–100
  • Mitzdorf U. Properties of cortical generators of event-related potentials. Pharmachopsychiatry. 1994; 27: 49–51
  • Rockstroh, B, Elbert, T, Canavan, A, Lutzenberger, W, Birbaumer, N. Slow cortical potentials and behaviour. Urban and Schwarzenberg, Baltimore, MD 1989
  • del Aguila MA, Longstreth WT, Jr, McGuire V, Koepsell TD, van Belle G. Prognosis in amyotrophic lateral sclerosis: a population-based study. Neurology. 2003; 60: 813–9
  • Escera C, Alho K, Winkler I, Näätänen R. Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci. 1998; 10: 590–604
  • Schröger E, Giard MH, Wolff C. Auditory distraction: event-related potential and behavioural indeces. Clin Neurophysiol. 2000; 111: 1450–60
  • Baudena P, Halgren E, Heit G, Clarke JM. Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol. 1995; 94: 251–64
  • Tecce JJ. Contingent negative variation (CNV) and psychological process in man. Psychol Bull. 1972; 77: 73–108
  • Plaitakis A, Constantakis E, Smith J. The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol. 1988; 24: 446–9
  • Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration. 1995; 4: 209–16
  • Rothstein JD. Excitotoxicity hypothesis. Neurology. 1996; 47((Suppl 2))27–35
  • Rothstein JD, Mertin LJ, Kunci RW. Deceased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. New Engl J Med. 1992; 326: 1464–8
  • Birbaumer N, Elbert T, Canavan AGM, Rocktroh B. Slow potentials of the cerebral cortex and behaviour. Physiol Rev. 1990; 70: 1–41
  • Rocktroh B, Müller M, Wagner M, Cohen R, Elbert T. Probing’ the nature of CNV. Electroencephal Clin Neurophysiol. 1993; 87: 235–41
  • Devrim M, Demiralp T, Ademoglu A, Kurt A. A model for P300 generation based on responses to near-threshold visual stimuli. Brain Res Cogn Brain Res. 1999; 8: 37–43
  • Rocktroh B, Müller M, Heinz A, Wagner M, Berg P, Elbert T. Modulation of auditory responses during oddball tasks. Biol Psychol. 1996; 43: 41–55
  • Münte TF, Tröger M, Nusser I, Wieringa BM, Johannes S, Matzke M, Dengler R. Alterations of early components of the visual evoked potential in amyotrophic lateral sclerosis. J Neurol. 1998; 245: 206–10
  • Ragazzoni A, Grippo A, Tozzi F, Zaccara G. Event-related potentials in patients with total locked-in state due to fulminant Guillain-Barré syndrome. Int J Psychophysiol. 2000; 37: 99–109
  • Rozenkrants B, Polich J. Affective ERP processing in a visual oddball task: arousal, valence, and gender. Clin Neurophysiol. 2008; 119: 2260–5
  • Lee HJ, Kim L, Kim YK, Suh KY, Han J, Park MK, et al. Auditory event-related potentials and psychological changes during sleep deprivation. Neuropsychobiology. 2004; 50: 1–5
  • Picton TW, Bentin S, Berg P, Donchin E, Hylliard SA, Johnson JR, et al. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiol. 2000; 37: 127–52
  • Miller GA, Lutzenberger W, Elbert T. The linked-reference issue in EEG and ERP recording. J Psychophysiol. 1991; 5: 273–6
  • Dien J. Issues in the application of the average reference: review, critiques, and recommendations. Behav Res Meth Instr Comp. 1998; 30: 34–43
  • Picton, TW, Lins, O, Scherg, M. The recording and analysis of event-related potentials, In. F Boller, Grafman, J, Johnson, JR. Handbook of Neuropsychology: event-related brain potentials and cognition. Amsterdam, Elsevier. 1995; 10 section 14, 3–73
  • Onofrj M, Thomas A, Paci C, Scesi M, Tombari R. Event-related potentials recorded in patients with locked-in syndrome. J Neurol Neurosurg Psychiatry. 1997; 63: 759–64
  • Birbaumer N, Weber C, Neuper C, Buch E, Haapen K, Cohen L. Physiological regulation of thinking: brain-computer interface (BCI) research. Prog Brain Res. 2006; 159: 369–91
  • Pham M, Hinterberger T, Neumann N, Kübler A, Hofmayer N, Grether A, et al. An auditory brain-computer interface based on the self-regulation of slow cortical potentials. Neurorehabil Neural Repair. 2005; 19: 206–18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.