388
Views
45
CrossRef citations to date
0
Altmetric
Original Article

Homocysteine levels and amyotrophic lateral sclerosis: A possible link

, , &
Pages 140-147 | Received 22 Dec 2008, Accepted 19 Mar 2009, Published online: 26 Feb 2010

References

  • Mattson MP. Gene-diet interactions in brain ageing and neurodegenerative disorders. Ann Intern Med. 2003; 139: 441–4
  • Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J, et al. DACH-LIGA homocystein (German, Austrian and Swiss Homocysteine Society): consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases – guidelines and recommendations. Clin Chem Lab Med. 2003; 41: 1392–1403
  • Stanger O, Weger M, Renner W, Konetschny R. Vascular dysfunction in hyperhomocysteinaemia. Implications for atherothrombotic disease. Clin Chem Lab Med. 2001; 39: 725–33
  • Stanger O, Weger M. Interactions of homocysteine, nitric oxide, folate and radicals in the progressive damaged endothelium. Clin Chem Lab Med. 2003; 41: 1444–54
  • Morris MS. Homocysteine and Alzheimer's disease. Lancet Neurol. 2003; 2: 425–8
  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med. 2002; 346: 476–83
  • Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, et al. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer's disease, and vascular dementia. Am J Clin Nutr. 2004; 80: 114–22
  • Quadri P, Fragiacomo C, Pezzati R, Zanda E, Tettamanti M, Lucca U. Homocysteine and B- vitamins in mild cognitive impairment and dementia. Clin Chem Lab Med. 2005; 43: 1096–1100
  • Postuma RB, Lang A. Homocysteine and levodopa. Should Parkinson's disease patients receive preventative therapy?. Neurology. 2004; 63: 886–91
  • Robert K, Pagès C, Ledru A, Delabar J, Caboche J, Janel N. Regulation of extracellular signal-regulated kinase by homocysteine in hippocampus. Neuroscience. 2005; 133: 925–35
  • Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci. 2000; 20: 6920–6
  • Vitvitsky V, Dayal S, Stabler S, Zhou Y, Wang H, Lentz SR, et al. Perturbations in homocysteine-linked redox homeostasis in a murine model for hyperhomocysteinaemia. Am J Physiol Regul Integr Comp Physiol. 2004; 287: 39–46
  • Jara-Prado A, Ortega-Vazquez A, Martinez-Ruano L, Rios C, Santamaria A. Homocysteine-induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotox Res. 2003; 5: 237–43
  • Obeid R, Herrmann W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 2006; 580: 2994–3005
  • Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001; 344: 1688–1700
  • Sung JJ, Kim HJ, Choi-Kwon S, Lee J, Kim M, Lee KW. Homocysteine induces oxidative cytotoxicity in Cu/Zn superoxide dismutase mutant motor neuronal cell. Neuroreport. 2002; 13: 377–81
  • Chung YH, Hong JJ, Shin CM, Joo KM, Kim MJ, Cha CI. Immunohistochemical study on the distribution of homocysteine in the central nervous system of a transgenic mouse expressing a human Cu/Zn SOD mutation. Brain Research. 2003; 967: 226–34
  • Cho KJ, Chung YH, Shin C, Shin DH, Kim YS, Gurney ME, et al. Reactive astrocytes express p53 in the spinal cord of transgenic mice expressing a human Cu/Zn SOD mutation. Neuroreport. 1999; 10: 3939–43
  • Cho KJ, Chung YH, Joo KM, Lee YJ, Shin DH, Cha CI. Reactive astrocytes express PARP in the central nervous system of SOD-G93A transgenic mice. Brain Res. 2004; 1003: 199–204
  • Kim SH, Henkel JS, Beers DR, Sengun IS, Simpson EP, Goodman JC, et al. PARP expression is increased in astrocytes but decreased in motor neurons in the spinal cord of sporadic ALS patients. J Neuropathol Exp Neurol. 2003; 62: 88–103
  • Tjattas L, Ortiz DO, Dhivant S, Mitton K, Rogers E, Shea TB. Folate deficiency and homocysteine induce toxicity in cultured dorsal root ganglion neurons via cytosolic calcium accumulation. Aging Cell. 2004; 3: 71–6
  • Adalbert R, Engelhardt JI, Siklos L. DL-homocysteic acid application disrupts calcium homeostasis and induces degeneration of spinal motor neurons in vivo. Acta Neuropathol. 2002; 103: 428–36
  • Lee, KW, Park, JH, Kim, MY, Min, JH, Cho, AS, Hong, YH, , et al. Neuroprotective effects of multivitamin therapy in a transgenic mouse model of amyotrophic lateral sclerosis. Amyotroph Lat Scler. 2006;7(1)122–3, (abstract).
  • Zhang X, Chen S, Li L, Wang Q, Le W. Folic acid protects motor neurons against the increased homocysteine, inflammation and apoptosis in SOD1-G93A transgenic mice. Neuropharmacology. 2008; 54: 1112–9
  • Al-Chalaby A, Leigh PN. Recent advances in amyotrophic lateral sclerosis. Curr Opin Neurol. 2000; 13: 397–405
  • Sazci, A, Idrisoglu, HA, Ergul, E, Akpinar, G. Methylenetetrahydrofolate reductase gene polymorphisms in amyotrophic lateral sclerosis (ALS). Amyotroph Lat Scler. 2005;6(1)86, (abstract).
  • Zoccolella S, Simone IL, Samarelli V, Samarelli V, Tortelli R, Serlenga L, et al. Elevated plasma homocysteine levels in patients with ALS. Neurology. 2008; 70: 222–5
  • Kaji R, Kodama M, Imamura A, Hashida T, Kohara N, Ishizu M, et al. Effect of ultra-high- dose methylcobalamin on compound muscle action potentials in amyotrophic lateral sclerosis: a double-blind controlled study. Muscle Nerve. 1998; 21: 1775–8
  • de Bree A, Verschuren WM, Kromhout D, Kluijtmans LA, Blom HJ. Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary artery disease. Pharmacol Rev. 2002; 54: 599–618
  • Bendotti C, Tortarolo M, Suchak SK, Calvaresi N, Carvelli L, Bastone A, et al. Transgenic SOD1-G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J Neurochem. 2001; 79: 737–46
  • Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992; 326: 1464–8
  • Pehar M, Vargas MR, Cassina P, Barbeito AG, Beckman JS, Barbeito L. Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis. Neurodegener Dis. 2005; 2: 139–46
  • Bedlack RS, Traynor BJ, Cudkowicz ME. Emerging disease-modifying therapies for the treatment of motor neuron disease/amyotrophic lateral sclerosis. Expert Opin Emerg Drugs. 2007; 12: 229–52
  • Spalloni A, Geracitano R, Berretta N, Sgobio C, Bernardi G, Mercuri NB, et al. Molecular and synaptic changes in the hippocampus underlying superior spatial abilities in pre-symptomatic G93A + /+ mice overexpressing the human Cu/Zn superoxide dismutase (Gly93 --> ALA) mutation. Exp Neurol. 2006; 197: 505–14
  • Schreiber H, Gaigalat T, Wiedemuth-Catrinescu U, Graf M, Uttner I, Muche R, et al. Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis: a longitudinal study in 52 patients. J Neurol. 2005; 252: 772–81
  • Mezzapesa DM, Ceccarelli A, Dicuonzo F, Carella A, de Caro MF, Lopez M, et al. Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. 2007; 28: 255–9
  • Siklos L, Engelhardt J, Harati Y, Smith RG, Joò F, Appel SH. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann Neurol. 1996; 39: 203–16
  • del Aguila MA, Longstreth WT, Jr, McGuire V, Koepsell TD, van Belle G. Prognosis in amyotrophic lateral sclerosis: a population-based study. Neurology. 2003; 60: 813–9
  • Izumi Y, Kaji R. Clinical trials of ultra-high-dose methylcobalamin in ALS. Brain Nerve. 2007; 59: 1141–7
  • de Lau LM, Koudstaal PJ, van Meurs JB, Uitterlinden AG, Hofman A, Breteler MM. Methylenetetrahydrofolate reductase C677T genotype and PD. Ann Neurol. 2005; 57: 927–30
  • Perla-Kaján J, Twardowski T, Jakubowski H. Mechanisms of homocysteine toxicity in humans. Amino Acids. 2007; 32: 561–72
  • Schymick JC, Talbot K, Traynor BJ. Genetics of sporadic amyotrophic lateral sclerosis. Hum Mol Genet. 2007; 16: 233–42
  • Stanojlović, O, Rašić-Marković, A, Hrnčić, D, Sušić, V, Macut, D, Radosavljević, T, , et al. Two types of seizures in homocysteine thiolactone-treated adult rats, behavioral and electroencephalographic study. Cell Mol Neurobiol. 2008;29:329–339. DOI 10.1007/s10571-008-9324-8.
  • Diekstra FP, Beleza-Meireles A, Leigh NP, Shaw CE, Al-Chalabi A. Interaction between PON1 and population density in amyotrophic lateral sclerosis. Neuroreport. 2009; 20: 186–90
  • Valdmanis PN, Kabashi E, Dyck A, Hince P, Lee J, Dion P, et al. Association of paraoxonase gene cluster polymorphisms with ALS in France, Quebec, and Sweden. Neurology. 2008; 71: 514–20
  • Landers JE, Shi L, Cho TJ, Glass JD, Shaw CE, Leigh PN, et al. A common haplotype within the PON1 promoter region is associated with sporadic ALS. Amyotroph Lateral Scler. 2008; 9: 306–14
  • Wills AM, Landers JE, Zhang H, Richter RJ, Caraganis AJ, Cudkowicz ME, et al. Paraoxonase 1 (PON1) organophosphate hydrolysis is not reduced in ALS. Neurology. 2008; 70: 929–34
  • Cronin S, Greenway MJ, Prehn JH, Hardiman O. Paraoxonase promoter and intronic variants modify risk of sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2007; 78: 984–6
  • Slowik A, Tomik B, Wolkow PP, Partyka D, Turaj W, Malecki MT, et al. Paraoxonase gene polymorphisms and sporadic ALS. Neurology. 2006; 67: 766–70
  • Saeed M, Siddique N, Hung WY, Usacheva E, Liu E, Sufit RL, et al. Paraoxonase cluster polymorphisms are associated with sporadic ALS. Neurology. 2006; 67: 771–6
  • Chiarugi A. Poly (ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol Sci. 2002; 23: 122–9
  • Schroecksnadel K, Frick B, Winkler C, Leblhuber F, Wirleitner B, Fuchs D. Hyperhomocysteinaemia and immune activation. Clin Chem Lab Med. 2003; 41: 1438–43
  • Schroecksnadel K, Frick B, Wirleitner B, Schennach H, Fuchs D. Homocysteine accumulates in supernatants of stimulated human peripheral blood mononuclear cells. Clin Exp Immunol. 2003; 134: 53–6
  • Moisse K, Strong MJ. Innate immunity in amyotrophic lateral sclerosis. Biochim Byophys Acta. 2006; 1762: 1083–93
  • Moreau C, Devos D, Brunaud-Danel V, Defebvre L, Perez T, Destée A, et al. Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia?. Neurology. 2005; 65: 1958–60
  • Kamath AF, Chauhan AK, Kisucka J, Dole VS, Loscalzo J, Handy DE, et al. Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood. 2006; 107: 591–3
  • Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, Potter H, et al. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modelling ALS. PlosOne. 2007; 2: 1205
  • Kado DM, Bucur A, Selhub J, Rowe JW, Seeman T. Homocysteine levels and decline in physical function: MacArthur Studies of Successful Aging. Am J Med. 2002; 113: 537–42
  • Soumarè A, Elbaz A, Ducros V, Tavernier B, Alpèrovitch A, Tzourio C. Cross-sectional association between homocysteine and motor function in the elderly. Neurology. 2006; 67: 985–90
  • Nilsson K, Gustafson L, Hultberg B. Elevated plasma homocysteine concentration in elderly patients with mental illness is mainly related to the presence of vascular disease and not the diagnosis. Dement Geriatr Cogn Disord. 2007; 24: 162–8
  • Irizarry MC, Gurol ME, Raju S, Diaz-Arrastia R, Locascio JJ, Tennis M, et al. Association of homocysteine with plasma amyloid beta protein in ageing and neurodegenerative disease. Neurology. 2005; 65: 1402–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.