203
Views
11
CrossRef citations to date
0
Altmetric
INVITED REVIEW

Stem cells and the ALS neurologist

Pages 417-423 | Received 12 Mar 2010, Accepted 22 Apr 2010, Published online: 28 May 2010

References

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, . Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.
  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, . Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A. 1998;95:13726–31.
  • Conti L, Cattaneo E. Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci. 2010;11: 176–87.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, . Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131:861–72.
  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, . Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318: 1917–20.
  • Ende N, Weinstein F, Chen R, Ende M. Human umbilical cord blood effect on SOD mice (amyotrophic lateral sclerosis). Life Sci. 2000;67:53–9.
  • Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, Lane JC, . Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res. 2003;12:255–70.
  • Garbuzova-Davis S, Sanberg CD, Kuzmin-Nichols N, Willing AE, Gemma C, Bickford PC, . Human umbilical cord blood treatment in a mouse model of ALS: optimization of cell dose. PLoS ONE. 2008;3:2494.
  • Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110:385–97.
  • Gao J, Coggeshall RE, Tarasenko YI, Wu P. Human neural stem cell-derived cholinergic neurons innervate muscle in motor neuron deficient adult rats. Neuroscience. 2005; 131:257–62.
  • Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, Shats I, . Axonal growth of embryonic stem cell-derived motor neurons in vitro and in motor neuron-injured adult rats. Proc Natl Acad Sci U S A. 2004;101: 7123–8.
  • Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, . Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol. 2006;60:32–44.
  • Xu L, Ryugo DK, Pongstaporn T, Johe K, Koliatsos VE. Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. J Comp Neurol. 2009;514:297–309.
  • Xu L, Yan J, Chen D, Welsh AM, Hazel T, Johe K, . Human neural stem cell grafts ameliorate motor neuron disease in SOD1 transgenic rats. Transplantation. 2006;82:865–75.
  • Rothstein JD, van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995;38:73–84.
  • Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, . Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science. 1998;281:1851–4.
  • Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, . Wild-type non-neuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science. 2003;302:113–7.
  • Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, . Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci. 2008;11:251–3.
  • Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, . Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006;312:1389–92.
  • Miller TM, Kim SH, Yamanaka K, Hester M, Umapathi P, Arnson H, . Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2006;103:19546–51.
  • Lobsiger CS, Boillee S, McAlonis-Downes M, Khan AM, Feltri ML, Yamanaka K, . Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc Natl Acad Sci U S A. 2009;106:4465–70.
  • Maragakis NJ, Rothstein JD. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol. 2006;2:679–89.
  • Lepore AC, Rauck B, Dejea C, Pardo AC, Rao MS, Rothstein JD, . Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci. 2008;11:1294–301.
  • Lai EC, Felice KJ, Festoff BW, Gawel MJ, Gelinas DF, Kratz R, . Effect of recombinant human insulin-like growth factor-I on progression of ALS: a placebo controlled study. Neurology. 1997;49:1621–30.
  • Borasio GD, Robberecht W, Leigh PN, Emile J, Guiloff RJ, Jerusalem F, . A placebo controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. Neurology. 1998;51:583–6.
  • A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF Study Group (Phase III). Neurology. 1999;52:1427–33.
  • Miller RG, Petajan JH, Bryan WW, Armon C, Barohn RJ, Goodpasture JC, . A placebo controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. Ann Neurol. 1996;39: 256–60.
  • Sorenson EJ, Windbank AJ, Mandrekar JN, Bamlet WR, Appel SH, Armon C, . Subcutaneous IGF-1 is not beneficial in two-year ALS trial. Neurology. 2008;71:1770–5.
  • Suzuki M, McHugh J, Tork C, Shelley B, Klein SM, Aebischer P, . GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS ONE. 2007;2:689.
  • Park S, Kim HT, Yun S, Kim IS, Lee J, Lee IS, . Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice. Exp Mol Med. 2009;41:487–500.
  • Hwang DH, Lee HJ, Park IH, Seok JI, Kim BG, Joo IS, . Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther. 2009;16:1234–44.
  • Suzuki M, McHugh J, Tork C, Shelley B, Hayes A, Bellantuono I, . Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther. 2008;16:2002–10.
  • Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, . Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2006;103:16021–6.
  • Corti S, Locatelli F, Donadoni C, Guglieri M, Papadimitriou D, Strazzer S, . Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain. 2004;127:2518–32.
  • Ohnishi S, Ito H, Suzuki Y, Adachi Y, Wate R, Zhang J, . Intra-bone marrow-bone marrow transplantation slows disease progression and prolongs survival in G93A mutant SOD1 transgenic mice, an animal model mouse for amyotrophic lateral sclerosis. Brain Res. 2009;1296:216–24.
  • Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N, . Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci. 2008;265:78–83.
  • Ferrero I, Mazzini L, Rustichelli D, Gunetti M, Mareschi K, Testa L, . Bone marrow mesenchymal stem cells from healthy donors and sporadic amyotrophic lateral sclerosis patients. Cell Transplant. 2008;17:255–66.
  • Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, . Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol. 2010 May;223(1):229–37.
  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000; 290:1779–82.
  • Borlongan CV, Evans A, Yu G, Hess DC. Limitations of intravenous human bone marrow CD133+ cell grafts in stroke rats. Brain Res. 2005;1048:116–22.
  • Martinez HR, Gonzalez-Garza MT, Moreno-Cuevas JE, Caro E, Gutierrez-Jimenez E, Segura JJ. Stem cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy. 2009;11:26–34.
  • Vitry S, Bertrand JY, Cumano A, Dubois-Dalcq M. Primordial hematopoietic stem cells generate microglia but not myelin-forming cells in a neural environment. J Neurosci. 2003;23:10724–31.
  • Appel SH, Engelhardt JI, Henkel JS, Siklos L, Beers DR, Yen AA, . Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology. 2008;71:1326–34.
  • Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, . Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321:1218–21.
  • Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, . Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009 Jan 15;457(7227): 277–80.
  • Karumbayaram S, Kelly TK, Paucar AA, Roe AJ, Umbach JA, Charles A, . Human embryonic stem cell-derived motor neurons expressing SOD1 mutants exhibit typical signs of motor neuron degeneration linked to ALS. Dis Model Mech. 2009;2:189–95.
  • Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci. 2007;10:608–14.
  • Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell. 2008;3:637–48.
  • Marchetto MC, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH. Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell. 2008;3:649–57.
  • Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, . Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007;10:615–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.