845
Views
37
CrossRef citations to date
0
Altmetric
Review

Review on design and control aspects of ankle rehabilitation robots

, &
Pages 93-101 | Received 04 Mar 2013, Accepted 14 Nov 2013, Published online: 09 Dec 2013

References

  • Tejima N. Rehabilitation robotics: a review. Advanced Robot 2000;14:551–64
  • Krebs HI, Palazzolo JJ, Dipietro L, et al. Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonom Robots 2003;15:7–20
  • Hesse S, Schmidt H, Werner C, et al. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 2003;16:705–10
  • Hussain S, Xie SQ, Jamwal PK. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study. IEEE Trans Biomed Eng 2013;17:442–51
  • Hussain S, Xie SQ, Jamwal PK. Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans Cybernet 2013;43:1025–34
  • Hussain S, Xie SQ, Jamwal PK. Robust nonlinear control of an intrinsically compliant robotic gait training orthosis. IEEE Trans Systems, Man, and Cybernetics: Systems 2013;43:655–65
  • Hussain S, Xie SQ, Jamwal PK, Parsons J. An intrinsically compliant robotic orthosis for treadmill training. Med Eng Phys 2012;34:1448–53
  • Hussain S, Xie SQ, Liu G. Robot assisted treadmill training: mechanisms and traning strategies. Med Eng Phys 2011;33:527–33
  • Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athlet Training 2002;37:364–75
  • Safran MR, Zachazewski JE, Benedetti RS, et al. Lateral ankle sprains: a comprehensive review Part 2: treatment and rehabilitation with an emphasis on the athlete. Med Sci Sports Exerc 1999;31:S438–47
  • Itay S, Ganel A, Horoszowski H, et al. Clinical and functional status following lateral ankle sprains: follow-up of 90 young adults treated conservatively. Orthop Rev 1982;11:73–6
  • Braun BL. Effects of ankle sprain in a general clinic population 6 to 18 months after medical evaluation. Arch Family Med 1999;8:143–8
  • Verhagen RAW, Keizer G, Dijk CN. Long-term follow-up of inversion trauma of the ankle. Arch Ortho Trauma Surg 1994;114:92–6
  • Anandacoomarasamy A, Barnsley L. Long term outcomes of inversion ankle injuries. Brit J Sports Med 2005;39:e14
  • Yeung MS, Chan KM, So CH, et al. An epidemiological survey on ankle sprain. Brit J Sports Med 1994;28:112
  • Gross P, Marti B. Risk of degenerative ankle joint disease in volleyball players: study of former elite athletes. Int J Sports Med 1999;20:58–63
  • Valderrabano V, Hintermann B, Horisberger M, et al. Ligamentous posttraumatic ankle osteoarthritis. Am J Sports Med 2006;34:612–20
  • Mattacola CG, Dwyer MK. Rehabilitation of the ankle after acute sprain or chronic instability. J Athlet Training 2002;37:413–29
  • Gopalai AA, Arosha Senanayake SMNA. A wearable real-time intelligent posture corrective system using vibrotactile feedback. IEEE/ASME Trans Mechatron 2011;16:827–34
  • Roy A, Krebs HI, Williams DJ, et al. Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans Robot 2009;25:569–82
  • Krebs HI, Volpe BT, Aisen ML, et al. Increasing productivity and quality of care: robot-aided neuro-rehabilitation. J Rehabil Res Develop 2000;37:639–52
  • Ueki S, Kawasaki H, Ito S, et al. Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Trans Mechatron 2010;17:136–46
  • Blaya JA, Herr H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 2004;12:24–31
  • Ferris DP, Czerniecki JM, Hannaford B, et al. An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech 2005;21:189–97
  • Sawicki GS, Ferris DP. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J NeuroEng Rehabil 2009;6:art. no. 23
  • Sawicki GS, Ann A, Gordon KE, et al. Powered lower limb orthoses: applications in motor adaptation and rehabilitation. IEEE Int Conference Rehabil Robot 2005;206–11
  • Boehler AW, Hollander KW, Sugar TG, et al. Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO). IEEE Int Conference Robot Automation 2008;2025–30
  • Agrawal A, Banala SK, Agrawal SK, et al. Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation. IEEE Int Conference Rehabil Robot 2005;41–4
  • Roy A, Krebs HI, Patterson SL, et al. Measurement of human ankle stiffness using the anklebot. Int Conference Rehabil Robot 2007;356–63
  • Roy A, Krebs HI, Williams DJ, et al. Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans Robot 2009;25:569–82
  • Wheeler JW, Krebs HI, Hogan N. An ankle robot for a modular gait rehabilitation system. IEEE/RSJ International Conference on Intelligent Robots and Systems; 2004; Sendai, Japan, pp. 1681–4
  • Jamwal PK, Xie SQ, Hussain S, et al. An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Trans Mechatron 2012;1–12. doi: 10.1109/TMECH.2012.2219065
  • Xie SQ, Jamwal PK. An iterative fuzzy controller for pneumatic muscle driven rehabilitation robot. Expert Syst Appl 2011;38:8128–37
  • Bharadwaj K, Sugar TG, Koeneman JB, et al. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. J Biomech Eng 2005;127:1009–13
  • Satici AC, Erdogan A, Patoglu V. Design of a reconfigurable ankle rehabilitation robot and its use for the estimation of the ankle impedance. Int Conference Rehabil Robot 2009;257–64
  • Girone M, Burdea G, Bouzit M, et al. Stewart platform-based system for ankle telerehabilitation. Autonom Robots 2001;10:203–12
  • Yoon J, Ryu J. A novel reconfigurable ankle/foot rehabilitation robot. IEEE International Conference on Robotics and Automation; 2005; Barcelona, Spain, pp. 2290–5
  • Yoon J, Ryu J, Lim KB. Reconfigurable ankle rehabilitation robot for various exercises. J Robot Syst 2006;22:S15–33
  • Saglia JA, Tsagarakis NG, Dai JS, et al. A high-performance redundantly actuated mechanism for ankle rehabilitation. Int J Robot Res 2009;28:1216–27
  • Liu G, Gao J, Yue H, et al. Design and kinematics simulation of parallel robots for ankle rehabilitation. IEEE International Conference on Mechatronics and Automation; 2006; Luoyang, China, pp. 1109–13
  • Syrseloudis CE, Emiris IZ. A parallel robot for ankle rehabilitation-evaluation and its design specifications. 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008; 2008
  • Dai JS, Zhao T. Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device. Autonom Robots 2004;16:207–18
  • Saglia JA, Tsagarakis NG, Dai JS, et al. Control strategies for ankle rehabilitation using a high performance ankle exerciser. IEEE Int Conference Robot Autom 2010;2221–7
  • Lin C-CK, Ju MS, Chen SM, et al. A specialized robot for ankle rehabilitation and evaluation. J Med Biol Eng 2008;28:79–86
  • Sun JG, Gao JY, Zhang JH, et al. Teaching and playback control system for parallel robot for ankle joint rehabilitation. IEEE Int Conference Industrial Engg Engg Manage 2007;871–5
  • Tsoi YH, Xie SQ. Design and control of a parallel robot for ankle rehabilitation. 15th International Conference on Mechatronics and Machine Vision in Practice, M2VIP'08; 2008;515–20
  • Girone M, Burdea G, Bouzit M, et al. Orthopedic rehabilitation using the Rutgers ankle interface. Stud Health Technol Informat 2000;70:89–95
  • Moreno JC, Brunettia F, Navarrob E, et al. Analysis of the human interaction with a wearable lower-limb exoskeleton. Appl Bionics Biomechan 2009;6:245–56
  • Pons JL. Rehabilitation exoskeletal robotics. IEEE Eng Med Biol Magazine 2010;29:57–63
  • Xing K, Xu Q, He J, et al. A novel wearable robot of hand repetitive therapy. Zhongguo Jixie Gongcheng/China Mech Eng 2009;20:2395–8
  • Rachmawati L, Srinivasan D. Incorporating the notion of relative importance of objectives in evolutionary multiobjective optimization. IEEE Trans Evolution Comput 2009;14:530–46
  • Pons JL, ed. Wearable robots. Chichester: John Wiley; 2008
  • Ham VR, Sugar TG, Vanderborght B, et al. Compliant actuator designs: review of actuators with passive adjustable compliance/controllable stiffness for robotic applications. IEEE Robot Automat Magazine 2009;16:81–94
  • Lewis FL, Dawson DM, Abdallah CT, et al. Robot manipulator control. 2nd ed. New York: Marcel Dekker; 2004
  • Nef T, Mihelj M, Riener R. ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput 2007;45:887–900
  • Deneve A, Moughamir S, Afilal L, et al. Control system design of a 3-DOF upper limbs rehabilitation robot. Comp Meth Prog Biomed 2008;89:202–14
  • Mihelj M, Tobias N, Robert R, et al. A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Advanced Robot 2007;21:843–67
  • Erol D, Sarkar N. Design and implementation of an assistive controller for rehabilitation robotic systems. Int J Advanced Robot Syst 2007;4:271–8
  • Kempf CJ, Kobayashi S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Trans Control Syst Technol 1999;7:513–26
  • Wang Y, Xiong Z, Ding H, et al. Nonlinear friction compensation and disturbance observer for a high-speed motion platform. International Conference on Robotics & Automation; New Orleans, LA; 2004, 4515–20
  • An CH, Hollerbach JM. Dynamic stability issues in force control of manipulators. IEEE Int Conference Robot Automat 1987;890–6
  • Colgate JE, Hogan N. Robust control of dynamically interacting systems. Int J Control 1988;48:65–88
  • Colgate JE, Hogan N. An analysis of contact instability in terms of passive physical equivalents. IEEE Int Conference Robot Automat 1989;404–9
  • Hogan N. Stable execution of contact tasks using impedance control. IEEE Int Conference Robot Automat 1987;1047–54
  • Buerger SP, Hogan N. Relaxing passivity for human-robot interaction. IEEE/RSJ Int Conference Intelligent Robots Syst 2006;4570–5
  • Buerger SP, Hogan N. Complementary stability and loop shaping for improved human–robot interaction. IEEE Trans Robot 2007;23:232–44
  • Murakami T, Yu F, Ohnishi K. Torque sensorless control in multidegree-of-freedom manipulator. IEEE Trans Indust Electronics 1993;40:259–65
  • Katsura S, Matsumoto Y, Ohnishi K. Analysis and experimental validation of force bandwidth for force control. IEEE Trans Indust Electronics 2006;53:922–8
  • Kong K, Tomizuka M, Moon H, et al. Mechanical design and impedance compensation of SUBAR (Sogang University's Biomedical Assist Robot). IEEE/ASME International Conference on Advanced Intelligent Mechatronics; 2008; Xi'an, China, pp. 377–82
  • Hogan N, Buerger SP. Impedance and interaction control. In: Kurfess T, ed. Robotics and automation handbook. New York: CRC Press; 2005
  • Newman WS. Stability and performance limits of interaction controllers. J Dynamic Syst Measure Control 1992;114:563–70
  • Vallery H, Duschau-Wicke A, Riener R. Generalized elasticities improve patient-cooperative control of rehabilitation robots. IEEE International Conference on Rehabilitation Robotics, ICORR; 2009, pp. 535–41
  • Duschau-Wicke A, von Zitzewitz J, Caprez A, et al. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2010;18:38–48
  • Jezernik S, Colombo G, Morari M. Automatic gait-pattern adaptation for rehabilitation with 4-dof robotic orthosis. IEEE Trans Robot Automation 2004;20:574–82
  • Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 2008;16:286–97
  • Riener R, Chan V, Reinkensmeyer DJ. Patient-cooperative strategies for robot aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 2005;13:380–94
  • Reinkensmeyer DJ, Jeremy EL, Steven CC. Robotics, motor learning, and neurologic recovery. Ann Rev Biomed Eng 2004;6:497–525
  • Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J NeuroEng Rehabil 2009;6:20
  • Deutsch JE, Latonio J, Burdea GC, et al. Post-stroke rehabilitation with the Rutgers Ankle system: a case study. Presence: Teleop Virt Environ 2001;10:416–30
  • Roy A, Krebs HI, Patterson SL, et al. Measurement of human ankle stiffness using the anklebot. 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR'07; 2007, pp. 356–63
  • Wheeler JW, Krebs HI, Hogan N. An ankle robot for a modular gait rehabilitation system. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2004; Sendai, pp. 1680–4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.