Publication Cover
Mitochondrial DNA
The Journal of DNA Mapping, Sequencing, and Analysis
Volume 26, 2015 - Issue 3
169
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Significant population genetic structure detected in the small yellow croaker Larimichthys polyactis inferred from mitochondrial control region

, , , &
Pages 409-419 | Received 04 Jul 2013, Accepted 07 Sep 2013, Published online: 14 Nov 2013

References

  • Adams SM, Lindmeier JB, Duvernell DD. (2006). Microsatellite analysis of the phylogeography, Pleistocene history and secondary contact hypotheses for the killifish, Fundulus heteroclitus. Mol Ecol 15:1109–23
  • Aris-Brosou S, Excoffier L. (1996). The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol Biol Evol 13:494–504
  • Avise J. (2000). Phylogeography: The history and formation of species. Cambridge, MA: Harvard University Press
  • Avise JC. (1998). The history and preview of phylogeography: A personal reflection. Mol Ecol 7:371–9
  • Baik CI, Cho KD, Lee CI, Choi KH. (2004). Oceanographic conditions of fishing ground of yellow croaker (Pseudosciaena polyactis) in Korean waters. J Korean Fish Soc 37:232–48
  • Beerli P, Felsenstein J. (1999). Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763--73
  • Bernatchez L, Wilson C. (1998). Comparative phylogeography of Nearctic and Palearctic fishes. Mol Ecol 7:431–52
  • Brunner PC, Douglas MR, Osinov A, Wilson CC, Bernatchez L. (2001). Holarctic phylogeography of arctic charr (Salvelinus alpinus) inferred from mitochondrial DNA sequences. Evolution Int J Org Evol 55:573–86
  • Chang Y, Huang F, Lo T. (1994). The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial DNA gene. J Mol Evol 38:138–55
  • CLIMAP. (1981). Seasonal reconstruction of the earth’s surface at the Last Glacial Maximum. The geological society of America map and chart series No. 36, Boulder, CO
  • Donaldson KA, Wilson RR. (1999). Amphi-Panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol 13:208–13
  • Drummond AJ, Rambaut A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–92
  • Excoffier L, Smouse P, Quattro J. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–91
  • FishBase. (2005). Available from: http://www.fishbase.org/home.htm [last accessed 2005].
  • Froese R, Pauly D. (2003). Global capture production for Larimichthys polyactis. In: FAO Fishery statistic. Rome: FAO
  • Fu Y. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–25
  • Glenn TC, Stephan W, Braun MJ. (1999). Effects of a population bottleneck on whooping crane mitochondrial DNA variation. Conserv Biol 13:1097–107
  • Grant SW, Bowen BW. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: Insight from sardines and anchovies and lessons for conservation. J Hered 89:415–26
  • Guo XP, Jin XS, Dai FQ. (2006). Growth variations of small yellow croaker (Pseudosciaena polyactis Bleeker) in the Bohai Sea. J Fish Sci China 13:243–9
  • Han Z Q, Lin LS, Shui BN, Gao TX. (2009). Genetic diversity of small yellow croaker Larimichthys polyactis revealed by AFLP markers. Afr J Agr Res 4:605–10
  • Herbert TD, Schuffert JD, Andreasen D, Heusser L, Lyle M, Mix A, Ravelo AC, et al. (2001). Collapse of the California current during glacial maxima linked to climate change on land. Science 293:71–6
  • Hewitt G. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–76
  • Hewitt G. (2000). The genetic legacy of the Quaternary ice ages. Nature 405:907–13
  • Hu CJ, Zhang J. (2005). Probe into the relationship between the migrating routes on endemic branch tribles of Larimichthys polyactis in the Southern Yellow Sea and the environment. Mar Fish 27:109–12
  • Hutchison DW, Templeton AR. (1999). Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–914
  • Hwang GL, Lee YC, Chang CS, Hue HK. (1994). Mitochondrial DNA analysis of the small yellow croaker (Pseudosciaena polyactis Bleeker) in the Yellow Sea. Bull Korean Fish Soc 27:613–19
  • Ikeda I. (1964). Studies on the fisheries biology of the Yellow Croaker in the East China and the Yellow Seas. Seikai Reg Fish Res Lab 31:1–81
  • Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, et al. (1992). On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography 7:701–38
  • Jin XS, Zhao XY, Meng TX, Cui Y. (2005). Biology resource and environment in the Bohai Sea and Yellow Sea. Beijing, China: Scientific Press. p 262–380
  • Kim JK, Kim YH, Kim MJ, Park JY. (2010). Genetic diversity, relationships and demographic history of the small yellow croaker, Larimichthys polyactis (Pisces: Sciaenidae) from Korea and China inferred mitochondrial control region sequence data. Anim Cells Syst 14:45–51
  • Kocher TD, Thomas WK, Meyer A, Edwards SV. (1989). Dynamic of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–200
  • Kuhner MK. (2006). LAMARC 2.0: Maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–70
  • Kuhner MK, Yamato J, Felsenstein J. (1998). Maximum likelihood estimation of population growth rates based on the coalescent. Genetics 149:429–34
  • Lambeck K, Purcell A, Johnston P, Nakada M, Yokoyama Y. (2003). Water-load definition in the glacio–hydro–isostatic sea-level equation. Quaternary Sci Rev 22:309–18
  • Lewis CA. (1975). Development of the gooseneck barnacle Pollicipes polymerus (Cirripedia: Lepadomorpha): Fertilization through settlement. Mar Biol 32:141–53
  • Li J, Feng F, Yue H. (2006). Twelve novel polymorphic microsatellites in a marine fish species, yellow croaker Larimichthys polyactis. Mol Ecol Notes 6:188–90
  • Liu J, Gao T, Yokogawa K, Zhang YP. (2006a). Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Latolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol Phylogenet Evol 39:799–811
  • Liu JX, Gao TX, Wu SF, Zhang YP. (2007). Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Mol Ecol 16:275–88
  • Liu JX, Gao TX, Zhuang ZM, Jin XS, Yokogawa K, Zhang YP. (2006b). Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Mol Phylogenet Evol 40:712–23
  • Liu JX, Tatarenkov A, Beacham TD, Gorbachev V, Wildes S, Avise J. (2011). Effects of Pleistocene climatic fluctuations on the phylogeographic and demographic histories of Pacific herring (Clupea pallasii). Mol Ecol 20:3879–93
  • Liu XS. (1962). The research of small yellow croaker (Larimichthys polyactis) geographic race and gonad. Beijing, China: Science Press. p 35–70
  • Manni F, Guérard E, Heyer E. (2004). Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–90
  • Marko PB. (2004). ‘What’s larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol Ecol 13:597–611
  • Marko PB, Hoffman JM, Emme SA, McGovern TM, Keever C, Cox LN. (2010). The ‘Expansion-Contraction’ model of Pleistocene biogeography: Rocky shores suffer a sea change? Mol Ecol 19:146–69
  • Marret F, de Vernal A, Pedersen TF, McDonald D. (2001). Middle Pleistocene to Holocene palynostratigraphy of Ocean Drilling Program Site 887 in the Gulf of Alaska, northeastern North Pacific. Can J Earth Sci 38:373–86
  • Michaux JR, Libois R, Filippucci MG. (2005). So close and so different: Comparative phylogeography of two small mammal species, the yellow-necked fieldmouse (Apodemus flavicollis) and the woodmouse (Apodemus sylvaticus) in the western Palearctic region. Heredity 94:52–63
  • Milá B, Girman DJ, Kimura M, Smith TB. (2000). Genetic evidence for the effect of a postglacial population expansion on the phylogeography of a North American songbird. Proc R Soci Lond B Biol Sci 267:1033–40
  • Mora C, Metzger R, Rollo A, Myer RA. (2007). Experimental simulations about the effects of overexploitation and habitat fragmentation on populations facing environmental warming. Proc R Soc B 274:1023–8
  • Nei M. (1987). Molecular evolutionary genetics. New York: Columbia University Press
  • NFRDI (National Fisheries Research and Development Institute). (1988). Assessment of coastal fisheries resources. Rep Fish Res Invest 10:1–254
  • Opazo JC, Burgueño MP, Carter MJ, Palma RE, Bozinovic F. (2008). Phylogeography of the subterranean rodent Spalacopus cyanus (Caviomorpha, Octodontidae). J Mamm 89:837–44
  • Palumbi S. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–72
  • Posada D, Crandall K. (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics 9:817–18
  • Rambaut A, Drummond AJ. (2007). Tracer v1.4. Available from: http://beast.bio.ed.ac.uk/Tracer
  • Ronquist F, Huelsenbeck JP. (2003). MrBayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–4
  • Sancetta C, Silvestri S. (1984). Diatom stratigraphy of the late Pleistocene (Brunhes) subarctic Pacific. Mar Micropaleontol 9:263–74
  • Sato A, Takezaki N, Tichy H, Figueroa F, Mayer WE, Klein J. (2003). Origin and speciation of Haplochromine fishes in East African Crater Lakes investigated by the analysis of their mtDNA, Mhc genes, and SINEs. Mol Biol Evol 20:1448--62
  • Schneider S, Roessli D, Excoffier L. (2000). ARLEQUIN, version 2000: A software of population genetic data analysis. Geneva: University of Geneva
  • Seeb LW, Seeb JE, Polovina JJ. (1990). Genetic variation in highly exploited spiny lobster Panulirus marginatus populations from the Hawaiian archipelago. Fish Bull USA 88:713–18
  • Seikai National Fisheries Research Institute. (2001). Biological and ecological characteristics of valuable fisheries resources from the East China Sea and the Yellow Sea. Nagasaki: Seikai Natl Fish Res Inst
  • Slatkin M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–79
  • Slatkin M, Hudson RR. (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555--62
  • Stepien C. (1999). Phylogeographical structure of the Dover sole Microstomus pacificus: The larval retention hypothesis and genetic divergence along the deep continental slope of the northeastern Pacific Ocean. Mol Ecol 8:923–39
  • Sturmbauer C, Baric S, Salzburge W, Rüber L, Verheyen E. (2001). Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Mol Biol Evol 18:144–54
  • Tajima F. (1983). Evolutionary relationship of DNA sequence in finite populations. Genetics 105:437–67
  • Tajima F. (1989a). Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–95
  • Tudela S, Garca-Marn JL, Pla C. (1999). Genetic structure of the European anchovy, Engraulis encrasicolus, in the north-west Mediterranean. J Exp Mar Biol Ecol 234:95–109
  • Voris HK. (2000). Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations. J Biogeogr 27:1153–67
  • Ward LK, Clarke RT, Cooke AS. (1994). Long-term scrub succession deflection by fallow deer at Castor Hanglands National Nature Reserve. Ann Rep Inst Terre Ecol (1993–4), NERC:78–81
  • Williams JW, Summers RL, Webb TIII. (1998). Applying plant functional types to construct biome maps from eastern North American pollen data: Comparisons with model results. Quaternary Sci Rev 17:607–28
  • Wlasiuk G, Garza JC, Lessa EP. (2003). Genetic and geographic differentiation in the Rio Negro tuco-tuco (Ctenomys rionegrensis): Inferring the roles of migration and drift from multiple genetic markers. Evolution 57:913–26
  • Wu RX, Liu SF, Zhuang ZM, Su YQ, Tang QS. (2012). Population genetic structure and demographic history of small yellow croaker, Larmichthys polyactis (Bleeker, 1877) from coastal waters of China. Afr J Biotechnol 11:12500--9
  • Xiao YS, Zhang Y, Gao TX, Yanagimoto T, Yabe M, Sakurai Y. (2009). Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ Biol Fish 85:303–14
  • Xu GP, Zhong XM, Ding YP, Liu PT, Tang JH, Xu P. (2005). The research on genetic diversity of Pseudosciaena polyactis population from the southern part of the Yellow Sea. Mark Sci 29:34–8
  • Xu X, Oda M. (1999). Surface-water evolution of the eastern East China Sea during the last 36,000 years. Mar Geol 156:285–304
  • Yamada U, Tokimura M, Horikawa H, Nakabo T. (2007). Fishes and fisheries of the East China and Yellow Seas. Kanagawa: Tokai University Press
  • Zhan AB, Hu JJ, Hu XL, Zhou ZH, Hui M, Wang S, Peng W, et al. (2009). Fine-scale population genetic structure of zhikong scallop (Chlamys farreri): Do local marine currents drive geographical differentiation? Mar Biotechnol 11:223–35
  • Zhang HY, Cheng JH. (2005). Geostatistical analysis on spatial patterns of small yellow croaker (Larimichthys polyactis) in the East China Sea. J Fish Sci China 12:419–23
  • Zhu D, Jamieson BGM, Hugall A, Moritz C. (1994). Sequence evolution and phylogenetic signal in control-region and cytochrome b sequences of rainbow fishes (Melanotaenidae). Mol Biol Evol 11:672–83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.