Publication Cover
Mitochondrial DNA Part A
DNA Mapping, Sequencing, and Analysis
Volume 27, 2016 - Issue 6
313
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Phylogenetic relationships of Hemiptera inferred from mitochondrial and nuclear genes

, , , , &
Pages 4380-4389 | Received 03 Aug 2015, Accepted 29 Aug 2015, Published online: 17 Oct 2015

References

  • Abascal F, Zardoya R, Posada D. (2005). ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21:2104–5
  • Amyot CJB, Audenet-Serville JC. (1843). Histoire naturelle des insectes: Hémiptères (Vol. 1). Librairie encyclopédique de Roret. p 456–588
  • Anderson FE, Swofford DL. (2004). Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol Phylogenet Evol 33:440–51
  • Arnett RH. (2000). American insects: A handbook of the insects of America north of Mexico. Boca Raton: CRC Press. 1.003p
  • Ballard JWO, Whitlock MC. (2004). The incomplete natural history of mitochondria. Mol Ecol 13:729–44
  • Bekker-Migdisova EE. (1959). Some representatives of the Sternorrhyncha from the Permian and Mesozoic of the U.S.S.R. Materialy k. Osnovam Paleontol 3:104–16
  • Borror DJ, Delong DM, Triplehorn CA. (1981). An introduction to the study of insects. 5th edition. Philadelphia, USA: Saunders College Publishing
  • Borror DJ, White RE. (1970). A field guide to insects America north of Mexico. Boston, NY: Peterson Field Guide Series Houghton Mifflin Company. 404p
  • Boudreaux HB. (1979). Arthropodphylogeny with special reference to insects. New York: John Wiley and Sons
  • Bourgoin T. (1993). Female genitalia in Hemiptera Fulgoromorpha,morphological and phylogenetic data. Ann Soc Entomol France (Nouvelle Série) 29:225–44
  • Cai JJ, Woo PC, Lau SK, Smith DK, Yuen KY. (2006). Accelerated evolutionary rate may be responsible for the emergence of lineage-specific genes in ascomycota. J Mol Evol 63:1–11
  • Cameron SL. (2014). Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu Rev Entomol 59:95–117
  • Cameron SL, Beckenbach AT, Dowton MP, Whiting MF. (2006). Evidence from mitochondrial genomics on interordinal relationships in insects. Arthropod Syst Phylogeny 64:27–34
  • Cameron SL, Lambkin CL, Barker SC, Whiting MF. (2007). A mitochondrial genome phylogeny of Diptera: Whole genome sequence data accurately resolve relationships over broad timescales with high precision. Syst Entomol 32:40–59
  • Cameron SL, Sullivan J, Song H, Miller KB, Whiting MF. (2009). A mitochondrial genome phylogeny of the Neuropterida (lacewings alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool Scr 38:575–90
  • Campbell BC, Steffen-Campbell JD, Sorensen JT, Gill RJ. (1995). Paraphyly of Homoptera and Auchenorrhyncha inferred from 18S rRNA18S rRNA nucleotide sequences. Syst Entomol 20:175–94
  • Carver M, Gross GF, Woodward TE. (1991). Hemiptera (bugs leaf hoppers cicadas aphids scale insects etc.). In: CSIR Organization, editor. The insects of Australia a textbook for students and research workers. Victoria, Australia: Melbourne University Press. p 429–509
  • China WE. (1962). South American Peloridiidae (Hemiptera–Homoptera: Coleorrhyncha). Trans R Entomol Soc Lond 114:131–61
  • Cryan JR, Urban JM. (2012). Higher-level phylogeny of the insect order Hemiptera: Is Auchenorrhyncha really paraphyletic? Syst Entomol 37:7–21
  • Cui Y, Xie G, Hua J, Dang K, Zhou J, Liu X, Wang G, et al. (2013). Phylogenomics of Hemiptera (Insecta: Paraneoptera) based on mitochondrial genomes. Syst Entomol 38:233–45
  • Darriba D, Taboada GL, Doallo R, Posada D. (2012). jModelTest 2: More models new heuristics and parallel computing. Nat Methods 9:772
  • Dowton M, Cameron SL, Austin AD, Whiting MF. (2009). Phylogenetic approaches for the analysis of mitochondrial genome sequence data in the Hymenoptera – A lineage with both rapidly and slowly evolving mitochondrial genomes. Mol Phylogenet Evol 52:512–19
  • Evans JW. (1963). The phylogeny of the Homoptera. Annu Rev Entomol 8:77–94
  • Evans JW. (1981). A review of the present knowledge of the family Peloridiidae and new genera and species from New Zealand and New Caledonia (Hemiptera: Insecta). Rec Aust Mus 34:381–406
  • Fenn JD, Song H, Cameron SL, Whiting MF. (2008). A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Mol Phylogenet Evol 49:59–68
  • Funk DJ, Omland FE. (2003). Species-level paraphyly and polyphyly: Frequency causes and consequences with insights from animal mitochondrial DNA. Annu Rev Evol Syst 34:397–423
  • Gargaud M, López-García P, Martin H. (2011). Origins and evolution of life. Origins and evolution of life by Muriel Gargaud Purificación López–Garcìa Hervé Martin. Cambridge, UK: Cambridge University Press
  • Goremykin VV, Nikiforova SV, Biggs PJ, Zhong B, Delange P, Martin W, Woetzel S, et al. (2013). The evolutionary root of flowering plants. Syst Biol 62:50–61
  • Goremykin VV, Nikoforova SV, Bininda-Emonds OPP. (2010). Automated removal of noisy data in phylogenomic analyses. J Mol Evol 71:319–31
  • Grimaldi D, Engel MS. (2005). Evolution of the insects. New York: Cambridge University Press
  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol 59:307–21
  • Hamilton KGA. (1981). Morphology and evolution of the rhynchotan head (Insecta: Hemiptera Homoptera). Can Entomol 113:953–74
  • Hedtke SM, Townsend TM, Hillis DM. (2006). Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst Biol 55:522–9
  • Hendy MD, Penny D. (1989). A framework for the quantitative study of evolutionary trees. Syst Zool 38:297–309
  • Hennig W. (1981). Insect phylogeny. Chapter 3. New York: Academic Press
  • Hillis DM. (1996). Inferring complex phylogenies. Nature 383:130–1
  • Hua J, Li M, Dong P, Cui Y, Xie Q, Bu W. (2008). Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (Insecta: Hemiptera: Heteroptera). BMC Genomics 9:610
  • Hua J, Li M, Dong P, Cui Y, Xie Q, Bu W. (2009). Phylogenetic analysis of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha): Evidence from mitochondrial genomes. BMC Evol Biol 9:134
  • Kaltenpoth M, Showers CP, Dunn DM, Weiss RB, Strohm E, Seger J. (2012). Accelerated evolution of mitochondrial but not nuclear genomes of Hymenoptera: New evidence from crabronid wasps. PLoS One 7:e32826
  • Kevin PJ, Robert HC, Richard JA, Vincent SS, Roderic DMP, Dale HC. (2003). Dramatically elevated rate of mitochondrial substitution in lice (Insecta: Phthiraptera). Mol Phylogenet E 26:231–42
  • Kim MJ, Kang AR, Jeong HC, Kim KG, Kim I. (2011). Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae). Mol Phylogenet E 6:436–45
  • Komoto N, Yukihiro K, Ueda K, Tomita S. (2011). Exploring the molecular phylogeny of phasmids with whole mitochondrial genome sequences. Mol Phylogenet Evol 58:43–52
  • Kristensen NP. (1981). Phylogeny of insect orders. Annu Rev Entomol 26:135–57
  • Kück P, Meusemann K. (2010). FASconCAT: Convenient handling of data matrices. Mol Phylogenet Evol 56:1115–18
  • Lartillot N, Lepage T, Blanquart S. (2009). PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–8
  • Lartillot N, Philippe H. (2004). A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21:1095–109
  • Lartillot N, Rodrigue N, Stubbs D, Richer J. (2013). PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 62:611–15
  • Letsch HO, Meusemann K, Wipfler B, Schütte K, Beutel R, Misof B. (2012). Insect phylogenomics: Results problems and the impact of matrix composition. Proc Biol Sci 279:3282–90
  • Li H, Shao R, Song N, Song F, Jiang P, Li Z, Cai W. (2015). Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Sci Rep 5:8527
  • Ma C, Liu C, Yang P, Kang L. (2009). The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus. BMC Genomics 10:156
  • Miller M, Pfeiffer W, Schwartz T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees//Gateway Computing Environments Workshop (GCE). p 1–8
  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–7
  • Ouvrard D, Campbell BC, Bourgoin T, Chan KL. (2000). 18S rRNA18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta Hemiptera). Mol Phylogenet E 16:403–17
  • Poe S. (1998). The effect of taxonomic sampling on accuracy of phylogeny estimation: Test case of a known phylogeny. Mol Biol Evol 15:1086–90
  • Quant LS, Gascuel O, Lartillot N. (2008). Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24:2317–23
  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW. (2010). Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–83
  • Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–42
  • Shao R, Campbell NJ, Schmidt ER, Barker SC. (2001). Increased rate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects. Mol Biol Evol 18:1828–32
  • Simon S, Hadrys H. (2013). A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol 69:393–403
  • Song H, Sheffield NC, Cameron SL, Miller KB, Whiting MF. (2010). When phylogenetic assumptions are violated: Base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Syst Entomol 35:429–48
  • Song N, Liang A. (2009a). The complete mitochondrial genome sequence of Geisha distinctissima (Hemiptera: Flatidae) and comparison with other hemipteran insects. Acta Biochim Biophys Sin (Shanghai) 41:206–16
  • Song N, Liang A. (2009b). Complete mitochondrial genome of the small brown planthopper Laodelphax striatellus (Delphacidae: Hemiptera) with a novel gene order. Zool Sci 26:851–60
  • Song N, Liang A, Bu C. (2012). A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PLoS One 7:e48778
  • Song N, Liang A, Ma C. (2010). The complete mitochondrial genome sequence of the planthopper Sivaloka damnosus. J Insect Sci 10:76
  • Sorensen JT, Cambell BC, Gill RJ, Steffen-Campbell JD. (1995). Non-monophyly of Auchenorrhyncha (“Homoptera”) based upon 18S rRNA18S rRNA phylogeny: Ecoevolutionary and cladistic implications within pre-Heteropterodea Hemiptera (s.l.) and a proposal for new monophyletic suborders. Pan-Pac Entomol 71:31–60
  • Spooner CS. (1938). The phylogeny of the Homoptera. Univ Illinois Bull 16:7–102
  • Sweet MH. (1996). Comparative external morphology of the pregenital abdomen of the Hemiptera. In: Schaefer CW, editor. Studies on hemipteran phylogeny. Proceedings Thomas Say Publications in Entomology. Lanham, USA: Entomological Society of America. p119–158
  • Swofford DL. (2003). PAUP. Phylogenetic analysis using parsimony (and other methods). Version 4 (beta 10). Sunderland, MA: Sinauer Associates
  • Swofford DL, Waddell PJ, Huelsenbeck JP, Foster PG, Lewis PO, Rogers JS. (2001). Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst Biol 50:525–39
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–9
  • Thao ML, Baumann L, Baumann P. (2004). Organization of the mitochondrial genomes of whiteflies aphids and psyllids (Hemiptera Sternorrhyncha). BMC Evol Biol 4:2
  • Thomas JM, Horspool D, Brown B, Tcherepanov V, Upton C. (2007). GraphDNA: A Java program for graphical display of DNA composition analyses. BMC Bioinf 8:21
  • Timmermans MJ, Vogler AP. (2012). Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera and monophyly of aquatic elateriform beetles (Dryopoidea). Mol Phylogenet Evol 63:299–304
  • von Dohlen CD, Moran NA. (1995). Molecular phylogeny of the Homoptera: A paraphyletic taxon. J Mol Evol 41:211–23
  • Wägele JW. (1999). Major sources of errors in phylogenetic systematics. Zool Anz 238:329–37
  • Wei SJ, Shi M, Chen XX, Sharkey MJ, van Achterberg C, Ye GY, He JH. (2010). New views on strand asymmetry in insect mitochondrial genomes. PLoS One 5:e12708
  • Whiting MF. (1998). Long-branch distraction and the Strepsiptera. Syst Biol 47:134–8
  • Wootton RJ, Betts CR. (1986). Homology and function in the wings of Heteroptera. Syst Entomol 11:389–400
  • Xia X, Li C, Yang Q. (2003). Routine analysis of molecular data with software DAMBE. In: Yang Q, editor. Fundamental concepts and methodology in molecular palaeontology. Beijing: Science Press. p 149–67
  • Xia X. (2013). DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution. Mol Biol E 30:1720–8
  • Yang Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–91
  • Yoshizawa K, Saigusa T. (2001). Phylogenetic analysis of paraneopteran orders (Insecta: Neoptera) based on forewing base structure with comments on monophyly of Auchenorrhyncha (Hemiptera). Syst Entomol 26:1–13
  • Zhong B, Deusch O, Goremykin VV, Penny D, Biggs PJ, Atherton RA, Nikiforova SV, Lockhart PJ. (2011). Systematic error in seed plant phylogenomics. Genome Biol Evol 3:1340–8
  • Zrzavý J. (1992). Evolution of antennae and historical ecology of the hemipteran insects (Paraneoptera). Acta Entomol Bohemoslov 89:77–86
  • Zwick A, Regier JC, Zwickl DJ. (2012). Resolving discrepancy between nucleotides and amino acids in deep-level arthropod phylogenomics: Differentiating serine codons in 21-amino-acid models. PLoS One 7:e47450

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.