446
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Gene expression profile of SOD1-G93A mouse spinal cord, blood and muscle

, , , , , & show all
Pages 190-198 | Received 24 Jun 2012, Accepted 11 Nov 2012, Published online: 08 Jan 2013

References

  • Turner BJ, Talbot K. Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol. 2008;85:94–134.
  • Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nature reviews Neurology (Review). 2011; 7:616–30.
  • Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial ‘Clinical limits of amyotrophic lateral sclerosis’ workshop contributors. J Neurol Sci. 1994;124 (Suppl): 96–107.
  • Brooks BR, Miller RG, Swash M, Munsat TL.El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Scler. 2000;1:293−9.
  • Otto M, Bowser R, Turner M, Berry J, Brettschneider J, Connor J, . Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS. Amyotroph Lateral Scler. 2012;13:1–10.
  • Wilson ME, Boumaza I, Lacomis D, Bowser R. Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis. PLoS ONE. 2010;5:e15133.
  • Steele AJ, Al-Chalabi A, Ferrante K, Cudkowicz ME, Brown RH Jr, Garson JA. Detection of serum reverse transcriptase activity in patients with ALS and unaffected blood relatives. Neurology. 2005;64:454–8.
  • Nikolic-Kokic A, Stevic Z, Blagojevic D, Davidovic B, Jones DR, Spasic MB. Alterations in anti-oxidative defence enzymes in erythrocytes from sporadic amyotrophic lateral sclerosis (SALS) and familial ALS (FALS) patients. Clin Chem Lab Med. 2006;44:589–93.
  • Cudkowicz M, Qureshi M, Shefner J. Measures and markers in amyotrophic lateral sclerosis. NeuroRx. 2004;1:273–83.
  • Lawton KA, Cudkowicz ME, Brown MV, Alexander D, Caffrey R, Wulff JE, . Biochemical alterations associated with ALS. Amyotroph Lateral Scler. 2012;13:110–8.
  • Tang Y, Schapiro MB, Franz DN, Patterson BJ, Hickey FJ, Schorry EK, . Blood expression profiles for tuberous sclerosis complex 2, neurofibromatosis type 1, and Down’s syndrome. Ann Neurol. 2004;56:808–14.
  • Anderson A, Roncaroli F, Hodges A, Deprez M, Turkheimer F. Chromosomal profiles of gene expression in Huntington’s disease. Brain. 2008;131:381–8.
  • Runne H, Kuhn A, Wild EJ, Pratyaksha W, Kristiansen M, Isaacs JD, . Analysis of potential transcriptomic biomarkers for Huntington’s disease in peripheral blood. Proc Natl Acad Sci U S A. 2007;104:14424–9.
  • Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, . Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci U S A. 2005;102:11023–8.
  • Scherzer CR, Eklund AC, Morse LJ, Liao Z, Locascio JJ, Fefer D, . Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Natl Acad Sci U S A. 2007;104:955–60.
  • Marek K, Jennings D, Tamagnan G, Seibyl J. Biomarkers for Parkinson’s disease: tools to assess Parkinson’s disease onset and progression. Ann Neurol. 2008;64 (Suppl 2):S111–21.
  • Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM. Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging. 2007; 28:1795–809.
  • Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI, Sigman M, . Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet. 2007;16:1682–98.
  • Siniscalco D, Sapone A, Giordano C, Cirillo A, Novellis V, Magistris L, . The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients. J Autism Dev Disord. 2011;42:1403–10.
  • Du P, Kibbe WA, Lin SM. Lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24:1547–8.
  • Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–93.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B. 1995;57:200–89.
  • Alter O, Brown PO, Botstein D. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc Natl Acad Sci U S A. 2003;100:3351–6.
  • Tang Y, Lu A, Aronow BJ, Sharp FR. Blood genomic responses differ after stroke, seizures, hypoglycaemia, and hypoxia: blood genomic fingerprints of disease. Ann Neurol. 2001;50:699–707.
  • Graeber M. Biomarkers for Parkinson’s disease. Experimental Neurology. 2009;216:249–53.
  • Lincecum JM, Vieira FG, Wang MZ, Thompson K, de Zutter GS, Kidd J, . From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis. Nat Genet. 2010;42:392–9.
  • Kudo LC, Parfenova L, Vi N, Lau K, Pomakian J, Valdmanis P, . Integrative gene-tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. Hum Mol Genet. 2010; 19:3233–53.
  • Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009; 65 (Suppl 1):S3–9.
  • Qian Y, Banerjee S, Grossman CE, Amidon W, Nagy G, Barcza M, . Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing. Biochem J. 2008;415:123–34.
  • McHenry P, Wang W-LW, Devitt E, Kluesner N, Davisson VJ, McKee E, . Iejimalides A and B inhibit lysosomal vacuolar H+-ATPase (V-ATPase) activity and induce S-phase arrest and apoptosis in MCF-7 cells. J Cell Biochem. 2010;109:634–42.
  • Milgrom E, Diab H, Middleton F, Kane PM. Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J Biol Chem. 2007;282:7125–36.
  • Gusdon AM, Zhu J, van Houten B, Chu CT. ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neurobiol Dis. 2012;45:962–72.
  • Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, Shaw PJ. Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1-G93A mouse model of familial ALS. J Neurosci. 2007;27:9201–19.
  • D'arrigo A, Colavito D, Peña-Altamira E, Fabris M, Dam M, Contestabile A, . Transcriptional Profiling in the Lumbar Spinal Cord of a Mouse Model of Amyotrophic Lateral Sclerosis: A Role for Wild-Type Superoxide Dismutase 1 in Sporadic Disease?J Mol Neurosci.2010;41: 404–15.
  • Dangond F, Hwang D, Camelo S, Pasinelli P, Frosch M, Stephanopoulos G, . Molecular signature of late-stage human ALS revealed by expression profiling of post mortem spinal cord grey matter. Physiol Genomics. 2004;16:229–39.
  • Wang X, Simmons Z, Liu W, Boyer P, Connor J. Differential expression of genes in amyotrophic lateral sclerosis revealed by profiling the post mortem cortex. Amyotroph Lateral Scler. 2006;7:201–16.
  • Kirby J, Ning K, Ferraiuolo L, Heath PR, Ismail A, Kuo S-W, . Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain. 2011;134:506−17.
  • Saris CGJ, Horvath S, van Vught PWJ, van Es MA, Blauw HM, Fuller TF, . Weighted gene co-expression network analysis of the peripheral blood from amyotrophic lateral sclerosis patients. BMC Genomics. 2011;134:506–17.
  • Gonzalez de Aguilar J, Niederhauser-Wiederkehr C, Halter B, de Tapia M, di Scala F, Demougin P, . Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model. Physiol Genomics. 2008;32:207–18.
  • Pradat P-F, Dubourg O, de Tapia M, di Scala F, Dupuis L, Lenglet T, . Muscle gene expression is a marker of amyotrophic lateral sclerosis severity. Neurodegener Dis. 2012;9:38–52.
  • Ferri A, Cozzolino M, Crosio C, Nencini M, Casciati A, Gralla EB, . Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Proc Natl Acad Sci U S A. 2006;103:13860–5.
  • Cozzolino M, Pesaresi MG, Amori I, Crosio C, Ferri A, Nencini M, . Oligomerization of mutant SOD1 in mitochondria of motor neuronal cells drives mitochondrial damage and cell toxicity. Antioxid Redox Signal. 2009;11: 1547–58.
  • Liu J, Lillo C, Jonsson PA, Vande Velde C, Ward CM, Miller TM, . Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron. 2004;43:5–17.
  • Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D, . Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron. 2004;43:19–30.
  • Lukas TJ, Luo WW, Mao H, Cole N, Siddique T. Informatics-assisted protein profiling in a transgenic mouse model of amyotrophic lateral sclerosis. Mol Cell Proteomics. 2006;5: 1233–44.
  • Bergemalm D, Forsberg K, Jonsson PA, Graffmo KS, Brännström T, Andersen PM, . Changes in the spinal cord proteome of an amyotrophic lateral sclerosis murine model determined by differential in-gel electrophoresis. Mol Cell Proteomics. 2009;8:1306–17.
  • Menzies FM, Ince PG, Shaw PJ. Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem Int. 2002;40: 543–51.
  • Krasnianski A, Deschauer M, Neudecker S, Gellerich FN, Muller T, Schoser BG, . Mitochondrial changes in skeletal muscle in amyotrophic lateral sclerosis and other neurogenic atrophies. Brain. 2005;128:1870–6.
  • Vance C, Rogelj B, Hortobágyi T, de Vos KJ, Nishimura AL, Sreedharan J, . Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323:1208–11.
  • Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, . Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323:1205–8.
  • Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, . TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319:1668–72.
  • Benajiba L, Le Ber I, Camuzat A, Lacoste M, Thomas- Anterion C, Couratier P, . TARDBP mutations in motor neuron disease with frontotemporal lobar degeneration. Ann Neurol. 2009;65:470–3.
  • Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, van Vught PW, . Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet. 2009;18:472–81.
  • Veldink JH, Kalmijn S, van der Hout AH, Lemmink HH, Groeneveld GJ, Lummen C, . SMN genotypes producing less SMN protein increase susceptibility to and severity of sporadic ALS. Neurology. 2005;65:820–5.
  • Perrin FE, Boisset G, Docquier M, Schaad O, Descombes P, Kato AC. No widespread induction of cell death genes occurs in pure motor neurons in an amyotrophic lateral sclerosis mouse model. Hum Mol Genet. 2005; 14:3309–20.
  • Malaspina A, Jokic N, Huang W, Priestley J. Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A-SOD1 gene mutation and by mechanical compression. BMC Genomics. 2008;9:500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.