189
Views
5
CrossRef citations to date
0
Altmetric
Neurophysiology

Movement-related cortical potentials in ALS increase at lower and decrease at higher upper motor neuron burden scores

, , , &
Pages 380-389 | Received 16 Apr 2012, Accepted 16 Dec 2012, Published online: 18 Jan 2013

References

  • Shibasaki H, Hallett M. What is the Bereitschaftspotential?. Clin Neurophysiol. 2006;117:2341–56.
  • Shibasaki H, Barrett G, Halliday E, Halliday AM. Components of the movement related cortical potential and their scalp topography. Electroencephalogr Clin Neurophysiol. 1980;49:213–26.
  • Kornhuber HH, Deecke L. Hirnpotentialänderungen beim Menschen vor und nach Willkurbewegungen, dargestellt mit Magnetband-Speicherung und Ruckwartsanalyse. Pflugers Arch. 1964;281:52.
  • Colebatch JG. Bereitschaftspotential and movement related potentials: origin, significance, and application in disorders of human movement. Mov Disord. 2007;22: 601–10.
  • Westphal KP, Heinemann HA, Grözinger B, Kotchoubey BJ, Diekmann V, Becker W, et al. Bereitschaftspotential in amyotrophic lateral sclerosis (ALS): lower amplitudes in patients with hyperreflexia (spasticity). Acta Neurol Scand. 1998;98:15–21.
  • Inuggi A, Riva N, González-Rosa JJ, Amadio S, Amato N, Fazio R, et al. Compensatory movement related recruitment in amyotrophic lateral sclerosis patients with dominant upper motor neuron signs: an EEG source analysis study. Brain Res. 2011;1425:37–46.
  • Bai O, Vorbach S, Hallett M, Floeter MK. Movement related cortical potentials in primary lateral sclerosis. Ann Neurol. 2006;59:682–90.
  • Kew JJ, Brooks DJ, Passingham RE, Rothwell JC, Frackowiak RS, Leigh PN. Cortical function in progressive lower motor neuron disorders and amyotrophic lateral sclerosis: a comparative PET study. Neurology. 1994;44:1101–10.
  • Kew JJ, Leigh PN, Playford ED, Passingham RE, Goldstein LH, Frackowiak RS, et al. Cortical function in amyotrophic lateral sclerosis: a positron emission tomography study. Brain. 1993;116:655–80.
  • Konrad C, Henningsen H, Bremer J, Mock B, Deppe M, Buchinger C, et al. Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res. 2002;143:51–6.
  • Konrad C, Jansen A, Henningsen H, Sommer J, Turski PA, Brooks BR, et al. Subcortical reorganization in amyotrophic lateral sclerosis. Exp Brain Res. 2006;172:361–9.
  • Schoenfeld MA, Tempelmann C, Gaul C, Kühnel GR, Düzel E, Hopf JM, et al. Functional motor compensation in amyotrophic lateral sclerosis. J Neurol. 2005;252: 944–52.
  • Stanton BR, Williams VC, Leigh PN, Williams SC, Blain CR, Jarosz JM, et al. Altered cortical activation during a motor task in ALS: evidence for involvement of central pathways. J Neurol. 2007;254:1260–7.
  • Lulé D, Diekmann V, Kassubek J, Kurt A, Birbaumer N, Ludolph AC, et al. Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabil Neural Repair. 2007;21:518–26.
  • Tessitore A, Esposito F, Monsurrò MR, Graziano S, Panza D, Russo A, et al. Subcortical motor plasticity in patients with sporadic ALS: an fMRI study. Brain Res Bull. 2006;69:489–94.
  • Mohammadi B, Kollewe K, Samii A, Dengler R, Münte TF. Functional neuroimaging at different disease stages reveals distinct phases of neuroplastic changes in amyotrophic lateral sclerosis. Hum Brain Mapp. 2011;32:750–8.
  • Mitsumoto H, Ulug AM, Pullman SL, Gooch CL, Chan S, Tang MX, et al. Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology. 2007;68:1402–10.
  • Eisen A, Weber M. The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve. 2001;24:564–73.
  • Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C]®-PK11195 positron emission tomography study. Neurobiol Dis. 2004;15:601–9.
  • Lyall RA, Donaldson N, Polkey MI, Leigh PN, Moxham J. Respiratory muscle strength and ventilatory failure in amyotrophic lateral sclerosis. Brain. 2001;124:2000–13.
  • Fitting JW, Paillex R, Hirt L, Aebischer P, Schluep M. Sniff nasal pressure: a sensitive respiratory test to assess progression of amyotrophic lateral sclerosis. Ann Neurol. 1999;46:887–93.
  • Green C, Kiebert G, Murphy C, Mitchell JD, O’Brien M, Burrell A, et al. Patients’ health related quality of life and health state values for motor neuron disease/amyotrophic lateral sclerosis. Qual Life Res. 2003;12:565–74.
  • Boekestein WA, Kleine BU, Hageman G, Schelhaas HJ, Zwarts MJ. Sensitivity and specificity of the Awaji electrodiagnostic criteria for amyotrophic lateral sclerosis: retrospective comparison of the Awaji and revised El Escorial criteria for ALS. Amyotroph Lateral Scler. 2010; 6:497–501.
  • Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.
  • Brooks BR. The Norris ALS score: insight into the natural history of amyotrophic lateral sclerosis provided by Forbes Norris. In: Rose FC, editor. ALS-From Charcot to the present and into the future − The Forbes H. Norris (1928 − 1993) memorial Volume. London: Smith-Gordon; 1994. pp. 21–9.
  • Nunez PL, Srinivasan R, editors. Electric Fields of the Brain: The Neurophysics of EEG. New York: Oxford University Press; 2006.
  • Ferree TC. Spherical splines and average referencing in scalp electroencephalography. Brain Topogr. 2006;19:43–52.
  • Luck SJ, editor. An Introduction to the Event-Related Potential Technique. Cambridge: MA: MIT Press; 2005.
  • Lyons RG, editor. Understanding Digital Signal Processing. New York: Prentice Hall; 2004.
  • Cui RQ, Deecke L. High resolution DC-EEG analysis of the Bereitschaftspotential and post movement onset potentials accompanying uni- or bi-lateral voluntary finger movements. Brain Topogr. 1999;11:233–49.
  • Drongelen W. Signal processing for neuroscientists: introduction to the analysis of physiological signals. Amsterdam: Elsevier/Academic Press; 2006.
  • Hamburger HL, vd Burgt MA. Global field power measurement versus classical method in the determination of the latency of evoked potential components. Brain Topogr. 1991;3:391–6.
  • Skrandies W. Global field power and topographic similarity. Brain Topogr. 1990;3:137–41.
  • Daubenspeck JA, Lim LM, Akay M. Global field power helps separate respiratory related evoked potentials from EMG contamination. J Appl Physiol. 2000;88:282–90.
  • Toma K, Matsuoka T, Immisch I, Mima T, Waldvogel D, Koshy B, et al. Generators of movement related cortical potentials: fMRI-constrained EEG dipole source analysis. Neuroimage. 2002;17:161–73.
  • Lim SH, Dinner DS, Pillay PK, Lüders H, Morris HH, Klem G, et al. Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. Electroencephalogr Clin Neurophysiol. 1994;91:179–93.
  • Kollewe K, Körner S, Dengler R, Petri S, Mohammadi B. Magnetic resonance imaging in amyotrophic lateral sclerosis. Neurol Res Int. 2012;2012:608501.
  • Han J, Ma L. Functional magnetic resonance imaging study of the brain in patients with amyotrophic lateral sclerosis. Chin Med Sci J. 2006;21:228–33.
  • Agosta F, Valsasina P, Riva N, Copetti M, Messina MJ, Prelle A, et al. The cortical signature of amyotrophic lateral sclerosis. PLoS One. 2012;7:42816.
  • Maekawa S, Al-Sarraj S, Kibble M, Landau S, Parnavelas J, Cotter D, et al. Cortical selective vulnerability in motor neuron disease: a morphometric study. Brain. 2004;127: 1237–51.
  • Zanette G, Tamburin S, Manganotti P, Refatti N, Forgione A, Rizzuto N. Changes in motor cortex inhibition over time in patients with amyotrophic lateral sclerosis. J Neurol. 2002;249:1723–8.
  • Vucic S, Cheah BC, Yiannikas C, Kiernan MC. Cortical excitability distinguishes ALS from mimic disorders. Clin Neurophysiol. 2011;122:1860–6.
  • Judita J, Blaž K, Ignac Z, Aleš B, Janez Z. Sniffing related motor cortical potential: topography and possible generators. Respir Physiol Neurobiol. 2012; Oct 16. doi:pii: S1569-9048(12)00284-4.10.1016/j.resp.2012.10.006.
  • Tanji J, Okano K, Sato KC. Neuronal activity in cortical motor areas related to ipsilateral, contralateral, and bilateral digit movements of the monkey. J Neurophysiol. 1988;60: 325–43.
  • Smith MC. Nerve fibre degeneration in the brain in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1960;23:269–82.
  • Krampfl K, Petri S, Götz F, Mohammadi B, Bufler J. Amyotrophic lateral sclerosis (ALS) and mirror movements in a patient with polymicrogyria. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:266–9.
  • Bartels C, Mertens N, Hofer S, Merboldt KD, Dietrich J, Frahm J, et al. Callosal dysfunction in amyotrophic lateral sclerosis correlates with diffusion tensor imaging of the central motor system. Neuromuscul Disord. 2008;18: 398–407.
  • Filippini N, Douaud G, Mackay CE, Knight S, Talbot K, Turner MR. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology. 2010; 75:1645–52.
  • Douaud G, Filippini N, Knight S, Talbot K, Turner MR. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain. 2011;134: 3470–9.
  • Rose S, Pannek K, Bell C, Baumann F, Hutchinson N, Coulthard A, et al. Direct evidence of intra- and inter- hemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: an automated MRI structural connectivity study. Neuroimage. 2012;59:2661–9.
  • Fattapposta F, Pierelli F, Traversa G, My F, Mostarda M, D’Alessio C, et al. Preprogramming and control activity of bimanual self-paced motor task in Parkinson’s disease. Clin Neurophysiol. 2000;111:873–83.
  • Kristeva R, Cheyne D, Lang W, Lindinger G, Deecke L. Movement related potentials accompanying unilateral and bilateral finger movements with different inertial loads. Electroencephalogr Clin Neurophysiol. 1990;75: 410–8.
  • Becker W, Kristeva R. Cerebral potentials prior to various force deployments. Prog Brain Res. 1980;54:189–94.
  • Stefan K, Kunesch E, Benecke R, Classen J. Effects of riluzole on cortical excitability in patients with amyotrophic lateral sclerosis. Ann Neurol. 2001;49:536–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.