466
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Riluzole increases the rate of glucose transport in L6 myotubes and NSC-34 motor neuron-like cells via AMPK pathway activation

, , &
Pages 434-443 | Received 27 Jan 2013, Accepted 19 May 2013, Published online: 08 Jul 2013

References

  • Dupuis L, Pradat PF, Ludolph AC, Loeffler JP. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol. 2011;10:75–82.
  • Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrere B. Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr. 2001;74:328–34.
  • Dorst J, Kuhnlein P, Hendrich C, Kassubek J, Sperfeld AD, Ludolph AC. Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J Neurol. 2011;258:613–7.
  • Miyazaki K, Masamoto K, Morimoto N, Kurata T, Mimoto T, Obata T, et al. Early and progressive impairment of spinal blood flow–glucose metabolism coupling in motor neuron degeneration of ALS model mice. J Cereb Blood Flow Metab. 2012;32:456–67.
  • Cistaro A, Valentini M, Chiò A, Nobili F, Calvo A, Moglia C, et al. Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. Eur J Nucl Med Mol Imaging. 2012;39:251–9.
  • Zhao W, Varghese M, Vempati P, Dzhun A, Cheng A, Wang J, et al. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease. PLoS One. 2012;7:e49191.
  • Li Y, Chigurupati S, Holloway HW, Mughal M, Tweedie D, Bruestle DA, et al. Mattson Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis. PLoS One. 2012;7:e32008.
  • Lim LG, Lee JJ, Park SH, Park JH, Kim SJ, Cho HC, et al. Glucagon-like peptide-1 protects NSC-34 motor neurons against glucosamine through Epac-mediated glucose uptake enhancement. Neurosci Lett. 2010;479:13–7.
  • Aggarwal S, Cudkowicz M. ALS Drug Development: Reflections from the Past and a Way Forward. Neurotherapeutics. 2008;5:516–27.
  • Chowdhury G, Banasr M, de Graaf RA, Rothman DL, Behar KL, Sanacora G. Chronic riluzole treatment increases glucose metabolism in rat prefrontal cortex and hippocampus. J Cereb Blood Flow Metab. 2008;28:1892–7.
  • Squitieri F, Orobello S, Cannella M, Martino T, Romanelli P, Giampiero Giovacchini G, et al. Riluzole protects Huntington's disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins. Eur J Nucl Med Mol Imaging. 2009;36:1113–20.
  • Mu X, Azbill RD, Springer JE. Riluzole improves measures of oxidative stress following traumatic spinal cord injury. Brain Res. 2000;870:66–72.
  • Mali Y, Zisapel N. A novel decoy that interrupts G93A- superoxide dismutase gain of interaction with malate dehydrogenase improves survival in an amyotrophic lateral sclerosis cell model. J Med Chem. 2009;52:5442–8.
  • Gruzman A, Shamni O, Ben Yakir M, Sandovski D, Elgart A, Alpert E, et al. Novel D-xylose derivatives stimulate muscle glucose uptake by activating AMP-activated protein kinase. J Med Chem. 2008;51:8096–8.
  • Alpert E, Gruzman A, Studler-Lardi B, Blejter R, Reich R, et al. COX-2 inhibitors augment the rate of hexose transport in L6 skeletal myotubes. Diabetologia. 2006;49:562–70.
  • Sasson S, Kaiser N, Dan-Goor M, Oron R, Wertheimer E, Unluhizarci K, Cerasi E. Substrate autoregulation of glucose transport: hexose-6-phosphate mediates the cellular distribution of glucose transporters. Diabetologia. 1997;40: 30–9.
  • Wang Q, Khayat Z, Kishi K, Ebina Y, Klip A. GLUT4 translocation by insulin in intact muscle cells: detection by a fast and quantitative assay. FEBS Lett. 1998;427:193–7.
  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu/Zn superoxide dismutase mutation. Science. 1994;264:1772–5.
  • Durham HD, Dahrouge S, Cashman NR. Evaluation of the spinal cord neuron X neuroblastoma hybrid cell line NSC-34 as a model for neurotoxicity testing. Neurotoxicol. 1993; 14:387–95.
  • Rizzardini M, Mangolinia A, Lupi M, Ubezio P, Bendotti C, Cantoni L. Low levels of ALS-linked Cu/Zn superoxide dismutase increase the production of reactive oxygen species and cause mitochondrial damage and death in motor neuron-like cells. J Neurol Sci. 2005;232:95–103.
  • Cho GW, Kim GY, Baek S, Kim H, Kim T, Kim HJ, et al. Recombinant human erythropoietin reduces aggregation of mutant Cu/Zn-binding superoxide dismutase (SOD1) in NSC-34 cells. Neurosci Lett. 2011;504:107–11.
  • Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, Shaw IT, et al. Neuroblastoma× spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dynam. 1992;194:209–21.
  • Basso M, Samengo G, Nardo G, Massignan T, D’Alessandro G, Tartari S, et al. Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS One. 2009; 4:e8130.
  • Gomes C, Escrevente C, Costa J. Mutant superoxide dismutase-1 overexpression in NSC-34 cells: effect of trehalose on aggregation, TDP-43 localization and levels of coexpressed glycoproteins. Neurosci Lett. 2010;475:145–9.
  • Arciello M, Capo CR, Cozzolino M, Ferri A, Nencini M, Carri MT, Rossi L. Inactivation of cytochrome c oxidase by mutant SOD1 in mouse motor neuronal NSC-34 cells is independent from copper availability but is because of nitric oxide. J Neurochem. 2010;112:183–92.
  • Neymotin A, Calingasan NY, Wille E, Naseri N, Petri S, Damiano M, et al. Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Radic Biol Med. 2011;51:88–96.
  • Mali Y, Zisapel N. VEGF up-regulation by G93A superoxide dismutase and the role of malate-aspartate shuttle inhibition. Neurobiol Dis. 2010;37:673–81.
  • Gomes C, Keller S, Altevogt P, Costa J. Evidence for secretion of Cu/Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci Lett. 2007; 428:43–6.
  • Cui Z, Chen X, Lu B, Park SK, Xu T, Xie Z, et al. Preliminary quantitative profile of differential protein expression between rat L6 myoblasts and myotubes by stable isotope labelling with amino acids in cell culture. Proteomics. 2009;9:1274–92.
  • Beguinot F, Kahn CR, Moses AC, Smith RJ. The development of insulin receptors and responsiveness is an early marker of differentiation in the muscle cell line L6. Endocrinology. 1986;118:446–55.
  • Conde A, Diallinas G, Chaumont F, Chaves M, Gerós H. Transporters, channels, or simple diffusion?Dogmas, atypical roles and complexity in transport systems. Int J Biochem Cell Biol. 2010;42:857–68.
  • Gruzman A, Elgart A, Viskind O, Billauer H, Dotan S, Cohen G, et al. Antihyperglycaemic activity of 2,4:3,5-dibenzylidene-D-xylose-diethyl dithioacetal in diabetic mice. J Cell Mol Med. 2012;16:594–604.
  • Estrada DE, Ewart HS, Tsakiridis T, Volchuk A, Ramlal T, Tritschler H, et al. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: participation of elements of the insulin signaling pathway. Diabetes. 1996;45:1798–804.
  • Zaid H, Antonescu CN, Randhawa VK, Klip A. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J. 2008;413:201–15.
  • Klip A, Schertzer JD, Bilan PJ, Thong F, Antonescu C. Regulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromise. Acta Physiol (Oxf). 2009;196:27–35.
  • Kanai F, Ito K, Todaka M, Hayashi H, Kamohara S, Ishii K, et al. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem Biophys Res Commun. 1993;195:762–8.
  • Von der Crone S, Deppe C, Barthel A, Sasson S, Joost HG, Schurmann A. Glucose deprivation induces Akt-dependent synthesis and incorporation of GLUT1, but not of GLUT4, in the plasma membrane of 3T3-L1 adipocytes. Eur J Cell Biol. 2000;79:943–9.
  • Fujii N, Aschenbach WG, Musi N, Hirshman MF, Goodyear LJ. Regulation of glucose transport by the AMP-activated protein kinase. Proc Nutr Soc. 2004;63:205–10.
  • Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, et al. Characterization of the AMP activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996;271:27879–87.
  • Mohankumar SK, Taylor CG, Siemens L, Zahradka P. Activation of phosphatidylinositol-3 kinase, AMP-activated kinase and Akt substrate-160 kDa by trans-10, cis-12 conjugated linoleic acid mediates skeletal muscle glucose uptake. J Nutr Biochem. 2013;24:445–56.
  • Stevenson A, Yates DM, Manser C, de Vos KJ ,Vagnoni A, Leigh PN, et al. Riluzole protects against glutamate-induced slowing of neurofilamentaxonal transport. Neurosci Lett. 2009;454:161–4.
  • Marko AJ, Miller RA, Kelman A, Frauwirth KA. Induction of glucose metabolism in stimulated T-lymphocytes is regulated by mitogen-activated protein kinase. PLoS One. 2010;5:e15425.
  • Nagata D, Hirata Y. The role of AMP-activated protein kinase in the cardiovascular system. Hypertens Res. 2010;33:22–8.
  • Fernandez-Twinn DS, Blackmore HL, Siggens L, Giussani DA, Cross CM, Foo R. The programming of cardiac hypertrophy in the offspring by maternal obesity is associated with hyperinsulinaemia, AKT, ERK, and mTOR Activation. Endocrinology. 2012;153:5961–71.
  • Khayat ZA, McCall AL, Klip A. Nutrient control of GLUT1 processing and turnover in 3T3-L1 adipocytes. Biochem J. 1998;333:713–8.
  • Miyokawa-Gorin K, Takahashi K, Handa K, Kitahara A, Sumitani Y, Katsuta H. Induction of mitochondrial uncoupling enhances VEGF120 but reduces MCP-1 release in mature 3T3-L1 adipocytes: possible regulatory mechanism through endogenous ER stress and AMPK-related pathways. Biochem Biophys Res Commun. 2012;419:200–5.
  • De Sarro G, Siniscalchi A, Ferreri G, Gallelli L, de Sarro A. NMDA and AMPA/kainate receptors are involved in the anticonvulsant activity of riluzole in DBA/2 mice. Eur J Pharmacol. 2000;408:25–34.
  • Tsuji K, Nakamura Y, Ogata T, Shibata T, Kataoka K. Rapid decrease in ATP content without recovery phase during glutamate-induced cell death in cultured spinal neurons. Brain Res. 1994;662:289–92.
  • Atlante A, Gagliardi S, Minervini GM, Marra E, Passarella S, Calissano P. Rapid uncoupling of oxidative phosphorylation accompanies glutamate toxicity in rat cerebellar granule cells. Neuroreport. 2006;7:2519–23.
  • Duelli R, Kuschinsky W. Brain glucose transporters: relationship to local energy demand. News Physiol Sci. 2001; 16:71–6.
  • Vannucci SJ, Reinhart R, Maher F, Bondy CA, Lee WH, Vannucci RC, et al. Alterations in GLUT1 and GLUT3 glucose transporter gene expression following unilateral hypoxia-ischaemia in the immature rat brain. Brain Res Dev Brain Res. 1998;107:255–64.
  • Delgado-Esteban M, Almeida A, Bolanos JP. D-Glucose prevents glutathione oxidation and mitochondrial damage after glutamate receptor stimulation in rat cortical primary neurons. J Neurochem. 2000;75:1618–24.
  • Vergun O, Han YY, Reynolds IJ. Glucose deprivation produces a prolonged increase in sensitivity to glutamate in cultured rat cortical neurons. Exp Neurol. 2003;183:682–94.
  • Gruzman A, Babai G, Sasson S. Adenosine monophosphate-activated protein kinase (AMPK) as a target for anti-diabetic drugs. The Review of Diabetic Studies. 2009;6:13–36.
  • Culmsee C, Monnig J, Kemp BE, Mattson MP. AMP- activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci. 2001;17:45–58.
  • Jacobs RL, Lingrell S, Dyck JR, Vance DE. Inhibition of hepatic phosphatidylcholine synthesis by 5-Aminoimidazole-4-carboxamide-1-α-4-ribofuranoside is independent of AMP-activated protein kinase activation. J Biol Chem. 2007;282:4516–23.
  • Zhang L, He H, Balschi JA. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. Am J Physiol Heart Circ Physiol. 2007;293:H457–66.
  • Wu C, Chao Y, Shiah SG, Lin WW. Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. Biochim Biophys Acta. 2013;1833:1147–56.
  • Muyderman H, Hutson PG, Matusica D, Rogers ML, Rush RA. The Human G93A-Superoxide Dismutase-1 Mutation, Mitochondrial Glutathione and Apoptotic Cell Death. Neurochem Res. 2009;34:1847–56.
  • Ljubicic V, Khogali S, Renaud JM, Jasmin BJ. Chronic AMPK stimulation attenuates adaptive signalling in dystrophic skeletal muscle. Am J Physiol Cell Physiol. 2012; 302:C110–21.
  • Hu JH, Zhang H, Wagey R, Krieger C, Pelech SL. Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord. J Neurochem. 2003; 85:432–42.
  • Ackerley S, Grierson AJ, Banner S, Perkinton MS, Brownlees J, Byers HL, et al. p38, a stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol Cell Neurosci. 2004;26:354–64.
  • Hu JH, Chernoff K, Pelech S, Krieger C. Protein kinase and protein phosphatase expression in the central nervous system of G93A mSOD overexpressing mice. J Neurochem. 2003;85:422–31.
  • Kayampilly PP, Menon KM. AMPK activation by dihydrotestosterone reduces FSH-stimulated cell proliferation in rat granulosa cells by inhibiting ERK signalling pathway. Endocrinology. 2012;153:2831–8.
  • McMahon RJ, Frost SC. Nutrient control of GLUT1 processing and turnover in 3T3-L1 adipocytes. J Biol Chem. 1995;270:12094–9.
  • McCall AL, van Bueren AM, Nipper V, Moholt-Siebert M, Downes H, Lessov NJ. Forebrain ischaemia increases GLUT1 protein in brain microvessels and parenchyma. Cereb Blood Flow Metab. 1996;16:69–76.
  • Kim MS, Hur HJ, Kwon DY, Hwang JT. Tangeretin stimulates glucose uptake via regulation of AMPK signalling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol Cell Endocrinol. 2012;358:127–34.
  • Ducommun S, Wang HY, Sakamoto K, MacKintosh C, Chen S. Thr649Ala-AS-160 knock-in mutation does not impair contraction/AICAR-induced glucose transport in mouse muscle. Am J Physiol Endocrinol Metab. 2012; 302:E1036–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.