235
Views
7
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Association of the functional SNP rs2275294 in ZNF512B with risk of amyotrophic lateral sclerosis and Parkinson's disease in Han Chinese

, , , , &
Pages 142-147 | Received 14 Jan 2015, Accepted 19 Apr 2015, Published online: 24 Aug 2015

References

  • Kato S, Oda M, Tanabe H. Diminution of dopaminergic neurons in the substantia nigra of sporadic amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol. 1993;19:300–4
  • Park HK, Lim YM, Kim JS, Lee MC, Kim SM, Kim BJ, et al. Nigrostriatal dysfunction in patients with amyotrophic lateral sclerosis and Parkinsonism. J Neurol Sci. 2011;301:12–3.
  • Borasio GD, Linke R, Schwarz J, Schlamp V, Abel A, Mozley PD, et al. Dopaminergic deficit in amyotrophic lateral sclerosis assessed with [I-123] IPT single photon emission computed tomography. J Neurol Neurosurg Psychiatry. 1998;65:263–5.
  • Fathinia P, Hermann A, Reuner U, Kassubek J, Storch A, Ludolph AC. Parkinson’s disease-like midbrain hyperechogenicity is frequent in amyotrophic lateral sclerosis. J Neurol. 2013;260:454–7.
  • Jiao B, Guo JF, Wang YQ, Yan XX, Zhou L, Liu XY, et al. C9orf72 mutation is rare in Alzheimer’s disease, Parkinson’s disease, and essential tremor in China. Front Cell Neurosci. 2013;7:164.
  • Nuytemans K, Bademci G, Kohli MM, Beecham GW, Wang L, Young JI, et al. C9orf72 intermediate repeat copies are a significant risk factor for Parkinson's disease. Ann Hum Genet. 2013;77:351–63.
  • Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013;339:1335–8.
  • Byrne S, Heverin M, Elamin M, Walsh C, Hardiman O. Intermediate repeat expansion length in C9orf72 may be pathological in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15:148–50.
  • van Es MA, Schelhaas HJ, van Vught PW, Ticozzi N, Andersen PM, Groen EJ, et al. Angiogenin variants in Parkinson's disease and amyotrophic lateral sclerosis. Ann Neurol. 2011;70:964–73.
  • Daoud H, Belzil V, Martins S, Sabbagh M, Provencher P, Lacomblez L, et al. Association of long ATXN2 CAG repeat sizes with increased risk of amyotrophic lateral sclerosis. Arch Neurol. 2011;68:739–42.
  • Yamashita C, Tomiyama H, Funayama M, Inamizu S, Ando M, Li Y, et al. The evaluation of polyglutamine repeats in autosomal dominant Parkinson’s disease. Neurobiol Aging. 2014;35:1779.e17–21.
  • Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat. 2013;34:812–26.
  • Cannas A, Borghero G, Floris GL, Solla P, Chiò A, Traynor BJ, et al. The p.A382T TARDBP gene mutation in Sardinian patients affected by Parkinson’s disease and other degenerative Parkinsonisms. Neurogenetics. 2013;14:161–6.
  • He X, Zhang L, Yao X, Hu J, Yu L, Jia H, et al. Association studies of MMP-9 in Parkinson’s disease and amyotrophic lateral sclerosis. PLoS One.2013;8:e73777.
  • Ilzecka J, Stelmasiak Z, Dobosz B. Transforming growth factor-beta-1 (TGF-beta-1) in patients with amyotrophic lateral sclerosis. Cytokine. 2002;20:239–43.
  • Krupinski J, Kumar P, Kumar S, Kaluza J. Increased expression of TGF-beta-1 in brain tissue after ischaemic stroke in humans. Stroke.1996;27:852–7.
  • van der Wal EA, Gómez-Pinilla F, Cotman CW. Transforming Growth Factor-Beta-1 Is in Plaques in Alzheimer and Down Pathologies. Neuroreport. 1993;4:69–72.
  • Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T. Transforming growth factor-beta-1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci Lett. 1995;193:129–32.
  • Vawter MP, Dillon-Carter O, Tourtellotte WW, Carvey P, Freed WJ. TGF-beta-1 and TGF-beta-2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol.1996;142:313–22.
  • Martinou JC, Le Van Thai A, Valette A, Weber MJ. Transforming growth factor-beta-1 is a potent survival factor for rat embryo motor neurons in culture. Dev Brain Res. 1990;52: 175–81.
  • Chalazonitis A, Kalberg J, Twardzik DR, Morrison RS, Kessler JA. Transforming growth factor beta has neurotrophic actions on sensory neurons in vitro and is synergistic with nerve growth factor. Dev Bioi. 1992;152:121–32.
  • Poulsen KT, Armanini MP, Klein RD, Hynes MA, Phillips HS, Rosenthal A. TGF-beta-2 and TGF-beta-3 are potent survival factors for midbrain dopaminergic neurons. Neuron. 1994;13:1245–52.
  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3.
  • Nakamura M, Kaneko S, Ito H, Jiang S, Fujita K, Wate R, et al. Activation of transforming growth factor-β/Smad signalling reduces aggregate formation of mislocalized TAR DNA binding protein-43. Neurodegener Dis. 2013;11:182–93.
  • Vivien D, Ali C. Transforming growth factor-beta signalling in brain disorders. Cytokine Growth Factor Rev. 2006;17: 121–8.
  • Day WA, Koishi K, Nukuda H, McLennan IS. Transforming growth factor-beta-2 causes an acute improvement in the motor performance of transgenic ALS mice. Neurobiol Dis. 2005;19:323–30.
  • Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J. 1995;14:736–42.
  • Krieglstein K, Unsicker K. Transforming growth factor-beta promotes survival of midbrain dopaminergic neurons and protects them against N-methyl-4-phenylpyridinium ion toxicity. Neuroscience. 1994;63:1189–96.
  • Polazzi E, Altamira LE, Eleuteri S, Barbaro R, Casadio C, Contestabile A, Monti B. Neuroprotection of microglial conditioned medium on 6-hydroxydopamine-induced neuronal death: role of transforming growth factor-beta-2. J Neurochem. 2009;110:545–56.
  • Tapia-González S, Giráldez-Pérez RM, Cuartero MI, Casarejos MJ, Mena MÁ, Wang XF, Sánchez-Capelo A. Dopamine and α-synuclein dysfunction in Smad3 null mice. Mol Neurodegener. 2011;6:72.
  • Iida A, Takahashi A, Kubo M, Saito S, Hosono N, Ohnishi Y, et al. A functional variant in ZNF512B is associated with susceptibility to amyotrophic lateral sclerosis in Japanese. Hum Mol Genet. 2011;20:3684–92.
  • Schober A, Peterziel H, von Bartheld CS, Simon H, Krieglstein K, Unsicker K. GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. Neurobiol Dis. 2007;25:378–91.
  • Calne DB, Snow BJ, Lee C. Criteria for diagnosing Parkinson's disease. Ann Neurol. 1992;32:S125–7.
  • Thomas G, Sinville R, Sutton S, Farquar H, Hammer RP, Soper SA, et al. Capillary and microelectrophoretic separations of ligase detection reaction products produced from low-abundant point mutations in genomic DNA. Electrophoresis. 2004;25:1668–77.
  • McCombe PA, Henderson RD. Effects of gender in amyotrophic lateral sclerosis. Gend Med. 2010;7:557–70.
  • Alves CJ, de Santana LP, dos Santos AJ, de Oliveira GP, Duobles T, Scorisa JM, et al. Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome. Brain Res. 2011;1394:90–104.
  • Mehta P, Antao V, Kaye W, Sanchez M, Williamson D, Bryan L, et al. Prevalence of amyotrophic lateral sclerosis – United States, 2010–2011. MMWR Surveill Summ. 2014; 63 (Suppl 7):1–14.
  • Doi Y, Atsuta N, Sobue G, Morita M, Nakano I. Prevalence and incidence of amyotrophic lateral sclerosis in Japan. J Epidemiol. 2014;24:494–9.
  • Cui F, Liu M, Chen Y, Huang X, Cui L, Fan D, et al. Epidemiological characteristics of motor neuron disease in Chinese patients. Acta Neurol Scand. 2014;130:111–7.
  • Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med. 2013;369:233–44.
  • Yang X, Xi J, An R, Yu L, Lin Z, Zhou H, et al. Lack of evidence for an association between the V393A variant of COQ2 and amyotrophic lateral sclerosis in a Han Chinese population. Neurol Sci. 2015 Jan 23. [Epub ahead of print]
  • de Jong SW, Huisman MH, Sutedja NA, van der Kooi AJ, de Visser M, Schelhaas HJ, et al. Smoking, alcohol consumption, and the risk of amyotrophic lateral sclerosis: a population based study. Am J Epidemiol. 2012;176:233–9.
  • Pupillo E, Messina P, Giussani G, Logroscino G, Zoccolella S, Chiò A, et al. Physical activity and amyotrophic lateral sclerosis: a European population-based case-control study. Ann Neurol. 2014;75:708–16.
  • Masseret E, Banack S, Boumédiène F, Abadie E, Brient L, Pernet F, et al. Dietary BMAA exposure in an amyotrophic lateral sclerosis cluster from southern France. PLoS One. 2013;8:e83406.
  • Malek AM, Barchowsky A, Bowser R, Heiman-Patterson T, Lacomis D, Rana S, et al. Environmental and occupational risk factors for amyotrophic lateral sclerosis: a case-control study. Neurodegener Dis. 2014;14:31–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.