8,481
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

Nanotechnology: A magic bullet for HIV AIDS treatment

, , , , &
Pages 71-86 | Received 29 Sep 2013, Accepted 10 Jan 2014, Published online: 25 Feb 2014

References

  • Abdullah R, How CW, Abbasalipourkabir R. 2011. Characterization and stability of nanostructured lipid carriers as drug delivery system. Afr J Biotechnol. 10:1684–1689.
  • Adams ML, Lavasanifar A, Kwon GS. 2003. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 92:1343–1355.
  • Aji Alex MR, Chacko AJ, Jose S, Souto EB. 2011. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 42:11–18.
  • Alex A, Paul W, Chacko AJ, Sharma CP. 2011. Enhanced delivery of lopinavir to the CNS using Compritol-based solid lipid nanoparticles. Ther Deliv. 2:25–35.
  • Alexaki A, Liu Y, Wigdahl B. 2008. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Educ Res. 6:388–400.
  • Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH. 2010. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target. 18:381–388.
  • Amiji MM, Vyas TK, Shah LK. 2006. Role of nanotechnology in HIV/AIDS treatment: potential to overcome the viral reservoir challenge. Discov Med. 6:157–162.
  • Arendt CW, Littman DR. 2001HIV: master of the host cell. Genome Biol. 2:1030.
  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3:279–290.
  • Asmal M, Whitney JB, Luedemann C, Carville A, Steen R, Letvin NL, Geiben-Lynn R. 2012. In-vivo anti-HIV activity of the heparin- activated serine protease inhibitor antithrombin III encapsulated in lymph-targeting immunoliposomes. PLoS One. 7:e48234.
  • Available at: http://www.freepatentsonline.com (accessed on 26 August, 2013).
  • Available at: http://www.drugbank.ca (accessed on 24 February, 2013).
  • Barbaro G, Scozzafava A, Mastrolorenzo A, Supuran CT. 2005. Highly active antire-troviral therapy: current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome. Curr Pharm Des. 11:1805–1843.
  • Barry M, Mulcahy F, Merry C, Gibbons S, Back D. 1999. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet. 36: 289–304.
  • Bowman MC, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM, Melander C. 2008. Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc. 130:6896–6897.
  • Brannon-Peppas L, Blanchette JO. 2004. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 56:1649–1659.
  • Bronshtein T, Toledano N, Danino D, Pollack S, Machluf M. 2011. Cell derived liposomes expressing CCR5 as a new targeted drug-delivery system for HIV infected cells. J Control Release. 151:139–148.
  • Canizal G, Ascencio JA, Gardea-Torresday J, Yacamán MJ. 2001. Multiple twinned gold nanorods grown by bio-reduction techniques. J Nanoparticle Res. 3:475–481.
  • Carr A. 2003. Toxicity of antiretroviral therapy and implications for drug development. Nat Rev Drug Discov. 2:624–634.
  • Chandraprakash KS, Uduppa N, Umadevi P, Pillai GK. 1993. Effect of niosome encapsulation of methotrexate, macrophage activation, and tissue distribution of methotrexate and tumor size. Drug Deliv. 1:333–337.
  • Chang TMS. 2013. Artificial Cells, Nanomedicine and Biotechnology. Available at: http://www.artcell.mcgill.ca.
  • Chattopadhyay N, Zastre J, Wong HL, Wu XY, Bendayan R. 2008. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res. 25:2262–2271.
  • Chiappetta DA, Facorro G, de Celis ER, Sosnik A. 2011a. Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles. Nanomedicine. 7:624–637.
  • Chiappetta DA, Hocht C, Opezzo JA, Sosnik A. 2013. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine (Lond). 8:223–237.
  • Chiappetta DA, Hocht C, Taira C, Sosnik A. 2010. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability [corrected]. Nanomedicine (Lond). 5:11–23.
  • Chiappetta DA, Hocht C, Taira C, Sosnik A. 2011b. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles. Biomaterials. 32:2379–2387.
  • Chinen J, Shearer WT. 2008. Secondary immunodeficiencies, including HIV infection. J Allergy Clin Immunol. 121:S388–S392.
  • Clayton R, Ohagen A, Nicol F, Del Vecchio AM, Jonckers TH, Goethals O, et al. 2009. Sustained and specific in-vitro inhibition of HIV-1 replication by a protease inhibitor encapsulated in gp120-targeted liposomes. Antiviral Res. 84:142–149.
  • Clercq ED. 2009. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents. 33:307–320.
  • das Neves J, Araújo F, Andrade F, Michiels J, Ariën KK, Vanham G, et al. 2013. In-vitro and ex-vivo evaluation of polymeric nanoparticles for vaginal and rectal delivery of the anti-HIV drug dapivirine. Mol Pharm. 10:2793–2807.
  • de Las Cuevas N, Garcia-Gallego S, Rasines B, de la Mata FJ, Guijarro LG, Muñoz-Fernández MÁ, Gómez R. 2012. In-vitro studies of water-stable cationic carbosilane dendrimers as delivery vehicles for gene therapy against HIVand hepatocarcinoma. Curr Med Chem. 19:5052–5061.
  • Destache CJ, Belgum T, Goede M, Shibata A, Belshan MA. 2010. Antiretroviral release from poly(DL-lactide-co-glycolide) nanoparticles in mice. J Antimicrob Chemother. 65:2183–2187.
  • Deutsc G, Phillips NC, Tsoukas CM. 1993. Phase-I study of liposomal-azidothymidine (AZT) in advanced HIV disease. Int. Conf. AIDS 9 (1993 Jun 6–11) 474 (abstract no. PO-B26–2032).
  • Dubey V, Nahar M, Mishra D, Mishra P, Jain NK. 2011. Surface structured liposomes for site specific delivery of an antiviral agent-indinavir. J Drug Target. 19:258–269.
  • Dutta T, Garg M, Jain NK. 2008. Targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur J Pharm Sci. 34:181–189.
  • Dutta T, Agashe HB, Garg M, Balakrishnan P, Kabra M, Jain NK. 2007. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J Drug Target. 15:89–98.
  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. 2005. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 3:6.
  • Florence AT, Bailie AJ. 1989. Non-ionic surfactant vesicles: alternatives to liposomes in drug delivery? In: Prescot LF, Nimmo WS, Eds. Novel Drug Delivery and Its Therapeutic Applications. Chichester: Wiley, Inc.; pp. 281–296.
  • Gagne JF, Desormeaux A, Perron S, Tremblay MJ, Bergeron MG. 2002Targeted delivery of indinavir to HIV-1 primary reservoirs with immunoliposomes. Biochim Biophys Acta. 1558:198–210.
  • Gallo RC, Salahuddin SZ, Popovic M, et al. 1984. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 224(4648):500–503.
  • Garg M, Asthana A, Agashe HB, Agrawal GP, Jain NK. 2006. Stavudine-loaded mannosylated liposomes: in-vitro anti-HIV-I activity, tissue distribution and pharmacokinetics. J Pharm Pharmacol. 58:605–616.
  • Garg M, Dutta T, Jain NK. 2007. Reduced hepatic toxicity, enhanced cellular uptake and altered pharmacokinetics of stavudine loaded galactosylated liposomes. Eur J Pharm Biopharm. 67:76–85.
  • Giaquinto C, Morelli E, Fregonese F, Rampon O, Penazzato M, de Rossi A, D’Elia R. 2008. Current and future antiretroviral treatment options in paediatric HIV infection. Clin Drug Investig. 28:375–397.
  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM. 2004. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 15:897–900.
  • Gopinath D, Ravi D, Karwa R, Rao BR, Shashank A, Rambhau D. 2001. Pharmacokinetics of zidovudine following intravenous bolus administration of a novel niosome preparation devoid of cholesterol. Arzneimittelforschung. 51:924–930.
  • Hammer SM, Eron JJ, Reiss P, Schooley RT, Thompson MA, Walmsley S, et al. 2008Antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society — USA panel. JAMA. 300:555–570.
  • Jaeghere FD, Allemann E, Kubel F, Galli B, Cozens R, Doelker E, Gurny R. 2000. Oral bioavailability of a poorly water soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: effect of the particle size and nutritional state. J Control Release. 68:291–298.
  • Jain S, Tiwary AK, Jain NK. 2006. Sustained and targeted delivery of an anti-HIV agent using elastic liposomal formulation: mechanism of action. Curr Drug Deliv. 3:157–166.
  • Jain S, Tiwary AK, Jain NK. 2008. PEGylated elastic liposomal formulation for lymphatic targeting of zidovudine. Curr Drug Deliv. 5:275–281.
  • Jiménez JL, Clemente MI, Weber ND, Sanchez J, Ortega P, de la Mata FJ, et al. 2010. Carbosilane dendrimers to transfect human astrocytes with small interfering RNA targeting human immunodeficiency virus. BioDrugs. 24:331–343.
  • Jin SX, Bi DZ, Wang J, Wang YZ, Hu HG, Deng YH. 2005. Pharmacokinetics and tissue distribution of zidovudine in rats following intravenous administration of zidovudine myristate loaded liposomes, Pharmazie. 60:840–843.
  • Johnson VA, Brun-Vezinet F, Clotet B, Gunthard HF, Kuritzkes DR, Pillay D, et al. 2008. Update of the drug resistance mutations in HIV-1. Top HIV Med. 16:138–145.
  • Kasongo KW, Jansch M, Müller RH, Walker RB. 2011a. Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipidcarriers (NLCs) for potential targeting to the brain. J Liposome Res. 21:245–254.
  • Kasongo KW, Müller RH, Walker RB. 2012. The use of hot and cold high pressure homogenization to enhance the loading capacity and encapsulation efficiency of nanostructured lipid carriers for the hydrophilic antiretroviral drug, didanosine for potential administration to paediatric patients. Pharm Dev Technol. 17:353–362.
  • Kasongo KW, Pardeike J, Müller RH, Walker RB. 2011b. Selection and characterization of suitable lipid excipients for use in the manufacture of didanosine-loaded solidlipid nanoparticles and nanostructured lipid carriers. J Pharm Sci. 100:5185–5196.
  • Kasongo KW, Shegokar R, Müller RH, Walker RB. 2011c. Formulation development and in-vitro evaluation of didanosine-loaded nanostructured lipid carriers for the potential treatment of AIDS dementia complex. Drug Dev Ind Pharm. 37:396–407.
  • Kaur CD, Nahar M, Jain NK. 2008. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target. 16:798–805.
  • Kawata K, Osawa M, Okabe S. 2009. In-vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol. 43:6046–6051.
  • Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR. 1998The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 101:289–294.
  • Kuo YC, Chen HH. 2006. Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in-vitro blood-brain barrier. Int J Pharm. 327:160–169.
  • Kuo YC, Chen HH. 2009. Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int J Pharm. 365:206–213.
  • Kuo YC, Kuo CY. 2008. Electromagnetic interference in the permeability of saquinavir across the blood-brain barrier using nanoparticulate carriers. Int J Pharm. 351:271–281.
  • Kuo YC, Su FL. 2007. Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Int J Pharm. 340:143–152.
  • Kuo YC, Chen HH. 2010. Effect of electromagnetic field on endocytosis of cationic solid lipid nanoparticles by human brain-microvascular endothelial cells. J Drug Target. 18:447–456.
  • Kuo YC, Chung CY. 2012. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells. Colloids Surf B Biointerfaces. 91:242–249.
  • Kuo YC, Chung JF. 2011. Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf B Biointerfaces. 83:299–306.
  • Kuo YC, Lin PI, Wang CC. 2011. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles. Nanomedicine. 6:1011–1026.
  • Kuo YC, Yu HW. 2011a. Expression of ornithine decarboxylase during the transport of saquinavir across the blood-brain barrier using composite polymeric nanocarriers under an electromagnetic field. Colloids Surf B Biointerfaces. 88:627–634.
  • Kuo YC, Yu HW. 2011b. Transport of saquinavir across human brain-microvascular endothelial cells by poly(lactide-co-glycolide) nanoparticles with surface poly-(γ-glutamic acid). Int J Pharm. 416:365–375.
  • Kuo YC. 2005. Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles. Int J Pharm. 290:161–172.
  • Lanao JM, Briones E, Colino CI. 2007. Recent advances in delivery systems for anti-HIV1 therapy. J Drug Target. 15:21–36.
  • LaVan DA, Lynn DM, Langer R. 2002. Moving smaller in drug discovery and delivery. Nat Rev Drug Discov. 1:77–84.
  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. 2010. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology. 8:1.
  • Li Q, Du YZ, Yuan H, Zhang XG, Miao J, Cui FD, Hu FQ. 2010. Synthesis of lamivudine stearate and antiviral activity of stearic acid-g-chitosan oligosaccharide polymeric micelles delivery system. Eur J Pharm Sci. 41:498–507.
  • Li SD, Huang L. 2008. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 5:496–504.
  • Lin JH. 1999. Role of pharmacokinetics in the discovery and development of indinavir. Adv Drug Del Rev. 39:33–49.
  • Littman DR. 1998. Chemokine receptors: keys to AIDS pathogenesis?Cell. 93:677–680.
  • Lu L, Sun RW, Chen R. 2008. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 13:253–262.
  • Lucas S. 2000. Update on the pathology of AIDS. Intensive Crit Care Nurs. 17:155–166.
  • Mainardes RM, Gremião MP. 2012. Nanoencapsulation and characterization of zidovudine on poly (L-lactide) and poly(L-lactide)-poly(ethylene glycol)-blend nanoparticles. J Nanosci Nanotechnol. 12:8513–8521.
  • Makabi-Panzu B, Gourde P, Desormeaux A, Bergeron MG. 1998. Intracellular and serum stability of liposomal 2’, 3’-dideoxycytidine: effect of lipid composition. Cell Mol Biol (Noisy-le-grand). 44:277–284.
  • Mallipeddi R, Rohan LC. 2010. Progress in antiretroviral drug delivery using nanotechnology. Int J Nanomed. 5:533–547.
  • Martins S, Sarmento B, Ferreira DC, Souto EB. 2007. Lipid-based colloidal carriers for peptide and protein delivery —liposomes versus lipid nanoparticles. Int J Nanomed. 2:595–607.
  • McArthur JC, Brew BJ, Nath A. 2005. Neurological complications of HIV infection. Lancet Neurol. 4:543–555.
  • Meng J, Sturgis TF, Youan BB. 2011. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci. 44:57–67.
  • Mueller BU, Sleasman J, Nelson RP, Smith S, Deutsch PJ, Ju W, et al. 1998. A phase I/II study of the protease inhibitor indinavirin children with HIV infection. Pediatrics. 102:101–109.
  • Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K. 2001. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules. 2:1067–1070.
  • Negi JS, Chattopadhyay P, Sharma AK, Ram V. 2013. Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. Eur J Pharm Sci. 48:231–239.
  • Neves JD, Amiji MM, Bahia MF, Sarmento B. 2010. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Del Rev. 62:458–477.
  • Ojewole E, Mackraj I, Naidoo P, Govender T. 2008. Exploring the use of novel drug delivery systems for antiretroviral drugs. Eur J Pharm Biopharm. 70:697–710.
  • Ojikutu B, Jack C, Ramjee G. 2007. Provision of antiretroviral therapy in South Africa: unique challenges and remaining obstacles. J Infect Dis. 196:S523–S527.
  • Oussoren C, Magnani M, Fraternale A, Casabianca A, Chiarantini L, Ingebrigsten R, et al. 1999. Liposomes as carriers of the antiretroviral agent dideoxycytidine-5’-triphosphate. Int J Pharm. 180:261–270.
  • Panyam J, Labhasetwar V. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 55: 329–347.
  • Parthasarathy G, Uduppa N, Umadevi P, Pillai GK. 1994. Niosome encapsulation of vincristine sulphate: improved anticancer activity with reduced toxicity in mice. J Drug Target. 2:173–182.
  • Patel KK, Kumar P, Thakkar HP. 2012. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech. 13: 1502–1510.
  • Pattnaik G, Sinha B, Mukherjee B, Ghosh S, Basak S, Mondal S, Bera T. 2012. Submicron-size biodegradable polymer-based didanosine particles for treating HIV at early stage: an in vitro study. J Microencapsul. 29:666–676.
  • Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, et al. 2010Platinum nanoparticles: A promising material for future cancer therapy?Nanotechnology. 21:85–103.
  • Poznansky M, Juliano RL. 1984. Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol Rev. 36:277–304.
  • Pradhan M, Singh D, Singh MR. 2013. Novel colloidal carriers for psoriasis: current issues, mechanistic insight and novel delivery approaches. J Control Release. 170:380–395
  • Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM. 2012. Investigation on the stability of saquinavir loaded liposomes: implication on stealth, release characteristics and cytotoxicity. Int J Pharm. 431:120–129.
  • Ramana NL, Sethuraman S, Ranga U, Krishnan UM. 2010Development of a liposomal nano-delivery system for nevirapine. J Biomed Sci. 17:57.
  • Rawat M, Singh D, Saraf S, Saraf S. 2008. Lipid carriers: a versatile delivery vehicle for proteins and peptides. Yakugaku Zasshi. 128:269–280.
  • Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. 2009. The challenge of finding a cure for HIV infection. Science. 323:1304–1307.
  • Ruckmani K, Sankar V, Sivakumar M. 2010. Tissue distribution, pharmacokinetics and stability studies of zidovudine delivered by niosomes and proniosomes. J Biomed Nanotechnol. 6:43–51.
  • Saiyed ZM, Gandhi NH, Nair MP. 2010. Magnetic nanoformulation of azidothymidine 5’-triphosphate for targeted delivery across the blood-brain barrier. Int J Nanomedicine. 5:157–166.
  • Sankar V, Nareshkumar PN, Ajitkumar GN, Penmetsa SD, Hariharan S. 2012. Comparative studies of lamivudine-zidovudine nanoparticles for the selective uptake by macrophages. Curr Drug Deliv. 9:506–514.
  • Sathali AH, Ekambaram P, Priyanka K. 2012. Solid lipid nanoparticles: a review. Sci Revs Chem Commun. 2:80–102.
  • Shah CA. 2007. Adherence to high activity antiretroviral therapy (HAART) in pediatric patients infected with HIV: issues and interventions. Indian J Pediatr. 74:55–60.
  • Shah LK, Amiji MM. 2006. Intracellular delivery of saquinavir biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res. 23:2638–2645.
  • Sharma A, Sharma US. 1997. Liposomes in drug delivery: progress and limitations. Int J Pharm. 154:123–140.
  • Sharma P, Garg S. 2010. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Del Rev. 62:491–502.
  • Shegokar R, Singh KK. 2011. Stavudine entrapped lipid nanoparticles for targeting lymphatic HIV reservoirs. Pharmazie. 66:264–271.
  • Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. 2010. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chem Pharm Bull. 58:650–655.
  • Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as model for Gram-negative bacteria. J Colloid Interface Sci. 275:177–182.
  • Sosnik A, Chiappetta DA, Carcaboso AM. 2009. Drug delivery systems in HIV pharmacotherapy: What has been done and the challenges standing ahead. J Control Release. 138:2–15.
  • Stoddart C, Reyes R. 2006. Models of HIV-1 disease: a review of current status. Drug Discov Today Dis Models. 3:113–119.
  • Tymchuk CN, Currier JS. 2008. The safety of antiretroviral drugs, Expert Opin Drug Saf. 7:1–4.
  • Van Dyke RB, Lee S, Johnson GM, Wiznia A, Mohan K, Stanley K, et al. 2002. Reported adherence as a determinant of response to highly active antiretroviral therapy in children who have Human Immunodeficiency Virus Infection. Pediatrics. 109:61–67.
  • Varatharajan L, Thomas SA. 2009. The transport of anti-HIV drugs across blood – CNS interfaces: summary of current knowledge and recommendations for further research. Antivir Res. 82:A99–A109.
  • Villalonga-Barber C, Micha-Screttas M, Steele BR, Georgopolous A, Demetzos C. 2008. Dendrimers as biopharmaceuticals: synthesis and properties. Curr Top Med Chem. 8:1294–1309.
  • Von BH, Ramge P, Kreuter J. 2000. Controlled release of antiretroviral drugs. AIDS Rev. 2:31–38.
  • Vyas TK, Shah L, Amiji MM. 2006. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv. 3:613–628.
  • Xia Q, Saupe A, Muller RH, Souto EB. 2007. Nanostructured lipid carriers as novel carrier for sunscreen formulations. Int J Cosmet Sci. 29:473–482.
  • Zhang X, Liu J, Qiao H, Liu H, Ni J, Zhang W, Shi Y. 2010. Formulation optimization of dihydroartemisinin nanostructured lipid carrier using response surface methodology. Powder Technol. 197: 120–128.
  • Zhao J, Bowman L, Zhang X, Vallyathan V, Young SH, Castranova V, Ding M. 2009. Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the Caspase-8/bid and mitochondrial pathways. J Toxicol Environ Health. 72:1141–1149.
  • Zhou Y, Yu SH, Cui XP, Wang CY, Chen ZY. 1999. Formation of silver nanowires by a novel solid-liquid phase arc discharge method. Chem Mater. 11:545–546.
  • Zidan AS, Rahman Z, Khan MA. 2011. Product and process understanding of a novel pediatric anti-HIV tenofovir niosomes with a high-pressure homogenizer. Eur J Pharm Sci. 44:93–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.