1,972
Views
28
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Piper betle-mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles

, , , , , , , & show all
Pages 1400-1405 | Received 19 Feb 2015, Accepted 10 Mar 2015, Published online: 06 Jul 2015

References

  • Aazam ES, El-Said WA. 2014. Synthesis of copper/nickel nanoparticles using newly synthesized Schiff-base metals complexes and their cytotoxicity/catalytic activities. Bioorg chem. 57:5–12.
  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B. 2014. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 4:571–576.
  • Ali I, Khan FG, Suri KA, Gupta BD, Satti NK, Dutt P, Khan IA. 2010. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann Clin Microbiol Antimicrob. 9:1–9.
  • Aravinthan A, Govarthanan M, Selvam K, Praburaman L, Selvankumar T, Balamurugan R, et al. 2015. Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int J Nanomed. 2015:1977–1983.
  • Azam A, Ahmed AS, Oves M, Khan MS, Memic A. 2012. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed. 7:3527–3535.
  • Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 45:493–496.
  • Carnes CL, Stipp J, Klabunde KJ. 2002. Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide. Langmuir. 18:1352–1359.
  • Chowdhury MNK, Beg MDH, Khan MR, Mina MF. 2013. Synthesis of copper nanoparticles and their antimicrobial performances in natural fibres. Mater Lett. 98:26–29.
  • Das D, Nath BC, Phukon P, Dolui S. 2013. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B. 101:430–433.
  • Dong C, Cai H, Zhang X, Cao C. 2014. Synthesis and characterization of monodisperse copper nanoparticles using gum acacia. Physica E. 57:12–20.
  • Ethiraj AS, Kang DJ. 2012. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett. 7:70.
  • Gunalan S, Sivaraj R, Venckatesh R. 2012. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A Mol Biomol Spectrosc. 97:1140–1144.
  • Honary S, Barabadi H, Fathabad EG, Naghibi F. 2012. Green synthesis of copper oxide nanoparticles using penicillium aurantiogriseum, penicillium citrinum and penicillium wakasmanii. Digest J Nanomater Biostruct. 7:999–1005.
  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, et al. 2014. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett. 115:13–17.
  • Lim S, Hudson SM. 2004. Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr Polym. 56:227–234.
  • Lu L, Hsieh M, Oriss TB, Morel PA, Starzl TE, Rao AS, Thomson AW. 1995. Generation of DC from mouse spleen cell cultures in response to GM-CSF: immunophenotypic and functional analyses. Immunology. 84:127.
  • Mazura MDP, Nuziah H, Rasadah MA, Kiong LS. 2007. Evaluation of Piper betle on platelet activating factor (PAF) receptor binding activities. Malayas J Sci. 26:79–83.
  • Narayanan KB, Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 156:1–13.
  • Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Azam A. 2013. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PloS one. 8:59140.
  • Pin KY, Chuah AL, Rashih AA, Mazura MP, Fadzureena J, Vimala S, Rasadah MA. 2010. Antioxidant and anti-inflammatory activities of extracts of betel leaves (Piper betle) from solvents with different polarities. J Trop For Sci. 22:448–455.
  • Rahimi-Nasrabadi M, Pourmortazavi SM, Davoudi-Dehaghani AA, Hajimirsadeghi SS, Zahedi MM. 2013. Synthesis and characterization of copper oxalate and copper oxide nanoparticles by statistically optimized controlled precipitation and calcination of precursor. Cryst Eng Comm. 15:4077–4086.
  • Rathee JS, Patro BS, Mula S, Gamre S, Chattopadhyay S. 2006. Antioxidant activity of Piper betel leaf extract and its constituents. J Agric Food Chem. 54:9046–9054.
  • Ren G, Hu D, Cheng EWC, Reus MAV, Reip P, Allaker RP. 2009. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. 33:587.
  • Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V. 2014a. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 44:234–239.
  • Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS, Ravikumar V. 2014b. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta A. 12:746–750.
  • Sarkar A, Sen R, Saha P, Ganguly S, Mandal G, Chatterjee M. 2008. An ethanolic extract of leaves of Piper betle (Paan) Linn mediates its antileishmanial activity via apoptosis. Parasitol Res. 102:1249–1255.
  • Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O. 2011. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids. Nanoscale Res Lett. 6:1–7.
  • Sathishkumar G, Gobinath C, Karpagam K, Hemamalini V, Premkumar K, Sivaramakrishnan S. 2012. Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids Surf B Biointerfaces. 95:235–240.
  • Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R. 2014. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc. 129:255–288.
  • Sukirtha R, Priyanka M, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Achiraman S. 2012. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem. 47:273–279.
  • Usha Rani P, Rajasekharreddy P. 2011. Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf A. 389:188–194.
  • Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S. 2012. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem. 47:2405.
  • Wang H, Xu JZ, Zhu JJ, Chen HY. 2002. Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth. 244:88–94.
  • Zain NM, Stapley AGF, Shama G. 2014. Green Synthesis of Silver and Copper Nanoparticles using Ascorbic acid and Chitosan for Antimicrobial Applications. Carbohydr Polym. 112:195–202.
  • Zhang Q, Li Y, Xu D, Gu Z. 2001. Preparation of silver nanowire arrays in anodic aluminum oxide templates. J Mater Sci Lett. 20: 925–927.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.