1,107
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Affinity purification lipase from wheat germ: comparison of hydrophobic and metal chelation effect

, , , &
Pages 574-583 | Received 08 Dec 2015, Accepted 29 Feb 2016, Published online: 31 Mar 2016

References

  • Akduman B, Uygun M, Uygun DA, Akgöl S, Denizli A. 2013. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels. Mater Sci Eng C Mater Biol Appl. 33:4842–4848.
  • Altıntaş EB, Denizli A. 2009. Monosize magnetic hydrophobic beads for lysozyme purification under magnetic field. Mat Sci Eng C. 29:1627–1634.
  • Asliyuce S, Uzun L, Rad AY, Unal S, Say R, Denizli A. 2012. Molecular imprinting based composite cryogel membranes for purification of anti-hepatitis B surface antibody by fast protein liquid chromatography. J Chromatogr B. 889:95–102.
  • Asliyuce S, Uzun L, Say R, Denizli A. 2013. Immunoglobulin G recognition with Fab fragments imprinted monolithic cryogels: evaluation of the effects of metal-ion assisted-coordination of template molecule. React Funct Polym. 73:813–820.
  • Aslıyüce S,Bereli N, Uzun L, Onur MA, Say R, Denizli A. 2010. Ion-imprinted supermacroporous cryogel, for in vitro removal of iron out of human plasma with beta thalassemia. Sep Purif Technol. 73:243–249.
  • Bacha AB, Gargouri Y, Ali YB, Miled N, Reinbolt J, Mejdoub H. 2005. Purification and biochemical characterization of ostrich pancreatic lipase. Enzyme Microb Technol. 37:309–317.
  • Baydemir G, Andaç M, Derazshamshir A, Uygun DA, Özçalışkan E, Akgöl S, Denizli A. 2013. Synthesis and characterization of amino acid containing Cu(II) chelated nanoparticles for lysozyme adsorption. Mater Sci Eng C Mater Biol Appl. 33:532–536.
  • Berillo D, Mattiasson B, Galaev IY, Kirsebom H. 2012. Formation of macroporous self-assembled hydrogels through cryogelation of Fmoc-Phe-Phe. J Colloid Interface Sci. 368:226–230.
  • Björkling F, Godtfredsen SE, Kirk O. 1991. The future impact of industrial lipases. Trends Biotechnol. 9:360–363.
  • Brabcová J,Blažek J, Janská L, Krečmerová M, Zarevúcka M. 2012. Lipases as tools in the synthesis of prodrugs from racemic 9-(2,3-dihydroxypropyl)adenine. Molecules. 17:13813–13824.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254.
  • Brockerhoff H, Hoyle RJ, Hwang PC. 1970. Digestive enzymes of the American lobster (Homarus americanus). J Fish Res Board Can. 27:1357–1370.
  • Chen WY, Liu ZC, Lin PH, Fang CI, Yamamoto S. 2007. The hydrophobic interactions of the ion-exchanger resin ligands with proteins at high salt concentrations by adsorption isotherms and isothermal titration calorimetry. Sep Purif Technol. 54:212–219.
  • Dunn PJ. 2012. The importance of green chemistry in process research and development. Chem Soc Rev. 41:1452–1461.
  • Fendri A, Frikha F, Mosbah H, Miled N, Zouari N, Ben Bacha A, et al. 2006. Biochemical characterization, cloning, and molecular modelling of chicken pancreatic lipase. Arch Biochem Biophys. 451:149–159.
  • Flexer V, Durand F, Tsujimura S, Mano N. 2011. Efficient direct electron transfer of PQQ-glucose dehydrogenase on carbon cryogel electrodes at neutral pH. Anal Chem. 83:5721–5727.
  • Furutani T, Su R, Ooshima H, Kato J. 1995. Simple screening method for lipase for transesterification in organic solvent. Enzyme Microb Technol. 17:1067–1072.
  • Garner CW, Smith LC. 1970. A convenient purification of porcine pancreatic lipase free of proteolytic activity. Arch Biochem Biophys. 140:503–507.
  • Genest PW, Field TG, Vasudevan PT, Palekar AA. 1998. Continuous purification of porcine lipase by rotating annular size-exclusion chromatography. J Appl Biochem Biotechnol. 73:215–230.
  • Gupta A, Sarkar J, Kumar A. 2013. High throughput analysis and capture of benzo[a]pyrene using supermacroporous poly(4-vinyl pyridine-co-divinyl benzene) cryogel matrix. J Chromatogr A. 1278:16–21.
  • Brockerhoff H, Jensen RG. 1974. Lipolytic Enzymes. New York: Academic Press.
  • Hajizadeh S, Xu C, Kirsebom H, Ye L, Mattiasson B. 2013. Cryogelation of molecularly imprinted nanoparticles: a macroporous structure as affinity chromatography column for removal of β-blockers from complex samples. J Chromatogr A. 1274:6–12.
  • Hedström M, Plieva F, Galaev IY, Mattiasson B. 2008. Monolithic macroporous albumin/chitosan cryogel structure: a new matrix for enzyme immobilization. Anal Bioanal Chem. 390:907–912.
  • Hwang Y, Zhang C, Varghese S. 2010. Poly (ethylene glycol) cryogels as potential cell scaffolds: effect of polymerization conditions on cryogel microstructure and properties. J Mater Chem. 20:345–351.
  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O. 1994. Bacterial lipases. FEMS Microbiol Rev. 15:29–63.
  • Jaeger K-E, Eggert T. 2002. Lipases for biotechnology. Curr Opin Biotechnol. 13:390–397.
  • Kapoor M, Gupta MN. 2012. Lipase promiscuity and its biochemical applications. Process Biochem. 47:555–569.
  • Karadzic I, Masui A, Zivkovic LI, Fujiwara N. 2006. Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J Biosci Bioeng. 102:82–89.
  • Kirsebom H, Topgaard D, Galaev IY, Mattiasson B. 2010. Modulating the porosity of cryogels by influencing the nonfrozen liquid phase through the addition of inert solutes. Langmuir. 26:16129–16133.
  • Kueseng P, Thammakhet C, Thavarungkul P, Kanatharana P. 2010. Multiwalled carbon nanotubes/cryogel composite, a new sorbent for determination of trace polycyclic aromatic hydrocarbons. Microchem J. 96:317–323.
  • Mejdoub H, Reinbolt J, Gargouri Y. 1994. Dromedary pancreatic lipase: purification and structural properties. Biochimica et Biophysica Acta. 1213:119–126.
  • Patil KJ, Chopda MZ, Mahajan RT. 2011. Lipase biodiversity. Indian J Sci Technol. 4:971–982.
  • Rovery M, Boudouard M, Bianchetta J. 1978. An improved large scale procedure for the purification of porcine pancreatic lipase. Biochimica et Biophysica Acta. 525:373–379.
  • Schmidt M, Bornscheuer UT. 2005. High-throughput assays for lipases and esterases. Biomol Eng. 22:51–56.
  • Segura RL, Betancor L, Palomo JM, Hidalgo A, Fernández-Lorente G, Terreni M, et al. 2006. Purification and identification of different lipases contained in PPL commercial extracts: a minor contaminant is the main responsible of most esterasic activity. Enzyme Microb Technol. 39:817–823.
  • Solano DM, Hoyos P, Hernáiz MJ, Alcántara AR, Sánchez-Montero JM. 2012. Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresour Technol. 115:196–207.
  • Tsai YC, Huang JD, Chiu CC. 2007. Amperometric ethanol biosensor based on poly(vinyl alcohol)-multiwalled carbon nanotube-alcohol dehydrogenase biocomposite. Biosens Bioelectron. 22:3051–3056.
  • Tsujimura S, Nishina A, Hamano Y, Kano K, Shiraishi S. 2010. Electrochemical reaction of fructose dehydrogenase on carbon cryogel electrodes with controlled pore sizes. Electrochem Commun. 12:446–449.
  • Uzun L, Armutcu C, Biçen Ö, Ersöz A, Say R, Denizli A. 2013. Simultaneous depletion of immunoglobulin G and albumin from human plasma using novel monolithic cryogel columns. Colloids Surf B Biointerfaces. 112:1–8.
  • Verma N, Thakur S, Bhatt AK. 2012. Microbial lipases: industrial applications and properties (a review). Int Res J Biol Sci. 1:88–92.
  • World Enzymes Market. 2009. “World Enzymes.” Available from: http://www.reportlinker.com/p0148002/World-Enzymes-Market.html.
  • Yao K, Yun J, Shen S, Wang L, He X, Yu X. 2006. Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography. J Chromatogr A. 1109:103–110.
  • Yılmaz F, Bereli N, Yavuz H, Denizli A. 2009. Supermacroporous hydrophobic affinity cryogels for protein chromatography. Biochem Eng J. 43:272–279.
  • Yun J, Jespersen GR, Kirsebom H, Gustavsson PE, Mattiasson B, Galaev IY. 2011. An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds. J Chromatogr A. 1218:5487–5497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.