10
Views
0
CrossRef citations to date
0
Altmetric
Review

Fushi-ka (defective apoptosis) and rheumatic autoimmune diseases: an overview on the regulation of Fas-mediated T cell apoptotic signal transduction

, , , , , & show all
Pages 211-234 | Published online: 02 Jan 2014

REFERENCES

  • Kerr JFR, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br J Cancer 26: 239–257, 1972.
  • Jacobson MD, Weil M, Raff MC: Programmed cell death in animal development. Cell 88: 347–354, 1997.
  • Itoh N, Yonehara S, Ishii A et al: The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233–243, 1991.
  • Trauth BC, Klas C, Peters AMJ et al.: Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301–305, 1989.
  • Yonehara S, Ishii A, Yonehara M: A cell-killing monoclonal antibody (anti-Far) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169: 1747–1756, 1989.
  • Itoh N, Nagata S: A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 2687: 10932–10937, 1993.
  • Watanabe-Fukunaga R, Brannan CI, Itoh N et al.: The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J Immunol 148: 1274–1279, 1992.
  • Leithauser F, Dhein J, Mechtersheimer G et al.: Constitutive and induced expression of APO-1, a new member of the nerve growth factor/ tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest 69: 415–429, 1993.
  • Owen-Schaub LB, Radinsky R, Kruzel E et al.: Anti-Fas on nonhematopoietic tumors: Levels of Fas/ APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res 54: 1580–1586, 1994.
  • Miyawaki T, Uehara T, Nibu R et al: Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood. J Immunol 149: 3753–3758, 1992.
  • Moller P, Henne C, Leithauser et al: Coregulation of the APO-1 antigen with intercellular adhesion molecule-1 (CD45) in tonsillar B cell and coordinate expression in follicular center B cells and in follicle center and mediastinal B-cell lymphomas. Blood 81: 2067–2075, 1993.
  • Owen-Schaub LB, Yonehara S, Crump III WL et al.: DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell Immunol 140: 197–205, 1992.
  • Mysler E, Bini P, Drappa J et al: The apoptosis-1/Fas protein in human systemic lupus erythematosus. J Clin Invest 93: 1029–1034, 1994.
  • Klas C, Debatin KM, Jonker RR et al: Activation interferes with the APO-1 pathway in mature human T cells. Int Immunol 5: 625–630, 1993.
  • Nishimura Y, Ishii A, Kobayashi Y et al: Expression and function of mouse Fas antigen on immature and mature T cells. J Immunol 154: 4395–4403, 1995.
  • Drappa J, Brot N, Elkon KB: The Fas protein is expressed at high levels on CD4+CD8+ thymocytes and activated mature lymphocytes in normal mice but not in the lupus-prone strain, MRL Ipr/lpr. Proc Natl Acad Sci USA 90: 10340–10344, 1993.
  • Singer GG, Abbas AK: The Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1: 365–371, 1994.
  • Alderson MR, Tough TW, Davis-Smith T et al: Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 181: 71–77, 1995.
  • Tucek-Szabo CL, Andjelic S, Lacy E et al: Surface T cell Fas receptor/CD95 regulation, in vivo activation, and apoptosis. Activation-induced death can occur without Fas receptor. J Immunol 156: 192–200, 1996.
  • Cheng J, Zhou T, Liu C et al: Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263: 1759–1762, 1994.
  • Cascino I, Fiucci G, Papoff G et al.: Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J Immunol 154: 2706–2713, 1995.
  • Seishima M, Takemura M, Saito K et al: Highly sensitive ELISA for soluble Fas in serum: increased soluble Fas in the elderly. Clin Chem 42: 1911–1914, 1996.
  • Knipping E, Debatin KM, Strieker K et al: Identification of soluble APO-1 in supematants of human B- and T-cell lines and increased serum levels in B- and T-cell leukemia. Blood 85: 1562–1569, 1995.
  • Suda T, Takahashi T, Golstein P et al: Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178, 1993.
  • Giordano C, Stassi G, Maria RD et al.: Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto’s thyroiditis. Science 275: 960–963, 1997.
  • Bellgrau D, Gold D, Selawry H et al.: A role for CD95 ligand in preventing graft rejection. Nature 377: 630–632, 1995.
  • Nagata S, Golstein P: The Fas death factor. Science 267: 1449–1456, 1995.
  • Suda T, Okazaki T, Naito Y et al: Expression of the Fas ligand in cell of T cell lineage. J Immunol 154: 3806–3813, 1995.
  • Arase H, Arase N, Saito T: Fas-mediated cytotoxicity by freshly isolated natural killer cells. J Exp Med 181: 1235–1238, 1995.
  • Tanaka M, Suda T, Takahashi T et al: Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBO J 14: 1129–1135, 1995.
  • Kagi D, Vignaux F, Ledermann B et al: Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265: 528–530, 1994.
  • Rensing-Ehl A, Frei K, Flury R et al: Local Fas/APO-1 (CD95) ligand-mediated tumor cell killing in vivo. Eur J Immunol 25: 2253–2258, 1995.
  • Stuart PM, Griffith TS, Usui N et al: CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99: 396–402, 1997.
  • Kayagaki N, Kawasaki A, Ebata T et al.: Metalloproteinase-mediated release of human Fas ligand. J Exp Med 182: 1777–1783, 1995.
  • Tanaka M, Suda T, Haze K et al: Fas ligand in human serum. Nature Med 2: 317–322, 1996.
  • Ogasawara J, Watanabe-Fukunaga R, Adachi M et al: Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809, 1993.
  • Andrew BS, Eisenberg RA, Theofilopoulos AN et al: Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148: 1198–1215, 1978.
  • Cohen PL, Eisenberg RA: Lpr and gld: Single gene models of systemic autoimmunity and lympho-proliferative disease. Annu Rev Immunol 9: 243–269, 1991.
  • Watanabe-Fukunaga R, Brannan CI et al: Lympho-proliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314–317, 1992.
  • Adachi M, Watanabe-Fukunaga R, Nagata S: Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci USA 90: 1756–1760, 1993.
  • Matsuzawa A, Moriyama T, Kaneko T et al.: A new allele of the lpr locus, lprcg, that complements the gld gene in induction of lymphadenopathy in the mouse. J Exp Med 171: 519–531, 1990.
  • Russell JH, Rush B, Weaver C et al: Mature T cells of autoimmune Ipr/lpr mice have a defect in antigen-stimulated suicide. Proc Natl Acad Sci USA 90: 4409–4413, 1993.
  • Seldin MF, Morse HI HC, Reeves JP et al.: Genetic analysis of autoimmune gld mice. I. Identification of a restriction fragment lenght polymorphism closely linked to the gld mutation within a conserved linkage group. J Exp Med 167: 688–693, 1988.
  • Takahashi T, Tanaka M, Brannan CI et al.: Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76: 969–976, 1994.
  • Shultz LD, Coman DR, Bailey CL et al.: Viable motheaten, a new allele at the motheaten locus. I. Pathology. Am J Pathol 116: 179–192, 1984.
  • Su X, Zhou T, Yang PA et al.: Hematopoietic cell protein-tyrosine phosphatase-deficient motheaten mice exhibit T cell apoptosis defect. J Immunol 156: 4198–4208, 1996.
  • Sidman CL, Marshall JD, Allen RD: Murine ‘viable motheaten’ mutation reveals a gene critical to the development of both B and T lymphocytes. Proc Natl Acad Sci USA 86: 6279–6282, 1989.
  • Clark EA, Shultz LD, Pollack SB: Mutations in mice that influence natural killer (NK) cell activity. Immunogenetics 12: 601–613, 1981.
  • Shultz LD, Schweitzer PA, Rajan TV et al.: Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73: 1445–1454, 1993.
  • Su X, Zhou T, Wang Z et al: Defective expression of hematopoietic cell protein tyrosine phosphatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis. Immunity 2: 353–362, 1995.
  • Fisher GH, Rosenberg FJH, Straus SE et al: Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81: 935–946, 1995.
  • Wu J, Wilson J, He J et al: Mountz. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 98: 1107–1113, 1996.
  • Kim PKM, Dutra AS, Chandrasekharappa SC et al: Genomic structure and mapping of human FADD, an intracellular mediator of lymphocyte apoptosis. J Immunol 157: 5461–5466, 1996.
  • Amasaki Y, Kobayashi S, Takeda T et al: Up-regulated expression of Fas antigen (CD95) by peripheral naive and memory T cell subsets in patients with systemic lupus erythematosus (SLE): a possible mechanism for lymphopenia. Clin Exp Immunol 99: 245–250, 1995.
  • Sakata K, Sakata A, Vela-Roch N et al: Fas (CD95)-transduced signal preferentially stimulates lupus peripheral T lymphocytes. Manuscript submitted.
  • Emlen W, Niebur J, Kadera R: Accelerated in vivo apoptosis of lymphocytes from patients with systemic lupus erythematosus. J Immunol 152: 3685–3692, 1994.
  • Kaneko H, Saito K, Hashimoto H et al: Preferential elimination of CD28+ T cells in systemic lupus erythematosus (SLE) and the relation with activation-induced apoptosis. Clin Exp Immunol 106: 218–229, 1996.
  • Goel N, Ulrich DT, Clair EWS et al: Lack of correlation between serum soluble Fas/APO-1 levels and autoimmune disease. Arthritis Rheum 38: 1738–1743, 1995.
  • Talal N, Moutsopoulos HM, Kassan SS: Sjogren’s Syndrome. Clinical and Immunological Aspects. Springer-Verlag, Berlin, 1987.
  • Ogawa N, Dang H, Kong L et al: Lymphocyte apoptosis and apoptosis-associated gene expression in Sjogren’s syndrome. Arthritis Rheum 39: 1875–1885, 1996.
  • Ichikawa Y, Arimori K, Yoshida M et al: Abnormal expression of apoptosis-related antigens, Fas and bcl-2, on circulating T-lymphocyte subsets in primary Sjogren’s syndrome. Clin Exp Rheum 13: 307–313, 1995.
  • Kong L, Ogawa N, Nakabayashi T et al: Fas and Fas ligand expression in the salivary glands of patients with primary Sjogren’s syndrome. Arthritis Rheum 40: 87–97, 1997.
  • Firestein GS, Yeo M, Zbaifler NJ: Apoptosis in rheumatoid arthritis synovium. J Clin Invest 96: 1631–1638, 1995.
  • Nakajima T, Aono H, Hasunuma T et al: Apoptosis and functional Fas antigen in rheumatoid arthritis synoviocytes. Arthritis Rheum 38: 485–491, 1995.
  • Asahara H, Hasunuma T, Kobata T et al: In situ expression of protooncogenes and Fas/Fas ligand in rheumatic arthritis synovium. J Rheumatol 24: 430–435, 1997.
  • Salmon M, Scheel-Toellner D, Huissoon AP et ai: Inhibition of T cell apoptosis in the rheumatoid synovium. J Clin Invest 99: 439–446, 1997.
  • Hoa TTM, Hasunuma T, Aono H et ai: Novel mechanisms of selective apoptosis in synovial T cells of patients with rheumatoid arthritis. J Rheumatol 23: 1332–1337, 1996.
  • Sumida T, Hoa TTM, Asahara H et al: T cell receptor of Fas-sensitive T cells in rheumatoid synovium. J Immunol 158: 1965–1970, 1997.
  • Hayashi Y, Tamai H, Fukata S et al.: A long term clinical, immunological, and histological follow-up study of patients with goitrous chronic lymphocytic thyroiditis. J Clin Endocrinol Metab 61: 1172–1177, 1985.
  • Waksman BH, Reynolds WE: Multiple sclerosis as a disease of immune regulation. Proc Soc Exp Biol Med 175: 282–294, 1984.
  • Pelfrey CM, Tranquill LR, Boehme SA et al: Two mechanisms of antigen-specific apoptosis of myelin basic protein (MBP)-specific T lymphocytes derived from multiple sclerosis patients and normal individuals. J Immunol 154: 6191–6202, 1995.
  • Ichikawa H, Ota K, Iwata M: Increased Fas antigen on T cells in multiple sclerosis. J Neuroimmunol 71: 125–129, 1996.
  • Banda NK, Bernier J, Kurahara DK et al: Crosslinking CD4 by human immunodeficiency virus gpl20 primes T cells for activation-induced apoptosis. J Exp Med 176: 1099–1106, 1992.
  • Westendorp MO, Frank R, Ochsenbauer C et al: Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gpl20. Nature 375: 497–500, 1995.
  • Muro-Cacho CA, Pantaleo G, Fauci AS: Analysis of Apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden. J Immunol 154: 5555–5566, 1995.
  • McCloskey T, Oyaizu N, Kaplan M et al.: Expression of the Fas antigen in patients infected with human immunodeficiency virus. Cytometry 22: 111–114, 1995.
  • Haverkos HW, Drotman DP, Morgan M: Prevalence of Kaposi’s sarcoma among patients with AIDS. N Engl J Med 312: 1518, 1985.
  • Mori S, Murakami-Mori K, Jewett A et al: Resistance of AIDS-associated Kaposi’s sarcoma cells to Fas-mediated apoptosis. Cancer Res 56: 1874–1879, 1996.
  • Enari M, Hase A, Nagata S: Apoptosis by a cytosolic extract from Fas-activated cells. EMBO J 14: 5201–5208, 1995.
  • Nagata S: Apoptosis by death factor. Cell 88: 355–365, 1997.
  • Huang B, Eberstadt M, Olejniczak ET et al: NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384: 638–641, 1996.
  • Chinnaiyan AM, O’Rourke K, Tewari M et al: FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512, 1995.
  • Chinnaiyan AM, Tepper CG, Seldin MF et al: FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 271: 4961–4965, 1996.
  • AInemri ES, Fernandes-Alnemri T, Litwack G: Cloning and expression of four novel isoforms of human interleukin-1/6 converting enzyme with different apoptotic activities. J Biol Chem 270: 4312–4317, 1995.
  • Boldin MP, Goncharov TM, Goltsev VV et al: Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803–815, 1996.
  • Muzio M, Chinnaiyan AM, Kischkel FC et al: FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817–827, 1996.
  • Thornberry NA, Bull HG, Calaycay JR et al: A novel heterodimeric cysteine protease is required for interleukin-1^ processing in monocytes. Nature 356: 768–774, 1992.
  • Yuan J, Shaham S, Ledoux S et al.: The C. elegans cell death gene ced-’i encodes a protein similar to mammalian interleukin-1/J-converting enzyme. Cell 75: 641–652, 1993.
  • Ayala JM, Yamin TT, Egger LA et al: IL-1^-converting enzyme is present in monocytic cells as an inactive 45-kDa precursor. J Immunol 153: 2592–2599, 1994.
  • Wilson KP, Black JAF, Thomson JA et al: Structure and mechanism of interleukin-1/5 converting enzyme. Nature 370: 270–275, 1994.
  • Whyte M: ICE/CED-3 proteases in apoptosis. Trends Cell Biol 6: 245–248, 1996.
  • Singer n, Scott S, Chin J et al: The interleukin-1/J-converting enzyme (ICE) is localized on the external cell surface membranes and in the cytoplasmic ground substance of human monocytes by immuno-electron microscopy. J Exp Med 182: 1447–1459, 1995.
  • Miura M, Zhu H, Rotello R et al: Induction of apoptosis in fibroblasts by JL-1 ^-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75: 653–660, 1993.
  • Tewari M, Dixit VM: Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmk gene product. J Biol Chem 270: 3255–3260, 1995.
  • Kuida K, Lippke JA, Ku G et al: Altered cytokine export and apoptosis in mice deficient in interleukin-l/3-converting enzyme. Science 267: 2000–2003, 1995.
  • Liu X, Kim CN, Pohl J et al: Purification and characterization of an interleukin-1/3-converting enzyme family protease that activates cysteine protease p32 (CPP32). J Biol Chem 271: 13371–13376, 1996.
  • Nicholson DW, Ali A, Thornberry NA et al: Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43, 1995.
  • Enari M, Talanian RV, Wong WW et al: Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380: 723–726, 1996.
  • Fernandes-Alnemri T, Litwack G, Alnemri ES: CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein ced-3 and mammalian interleukin-1/3-converting enzyme. J Biol Chem 269: 30761–30764, 1994.
  • Alnemri ES, Livingston DJ, Nicholson DW et al: Human ICE/CED-3 protease nomenclature. Cell 87: 171, 1996.
  • Cifone MG, Maria RD, Roncaioli P et al.: Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 177: 1547–1552, 1993.
  • Barnholz Y, Roitman A, Gatt S: Enzymatic hydrosis of sphingolipids. U. Hydrolysis of sphingomyelin by an enzyme from rat brain. J Biol Chem 241: 3731–3737, 1966.
  • Rao BG, Spence MW: Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5.0. J Lipid Res 17: 506–515, 1976.
  • Okazaki T, Bielawska A, Domae N et al: Characteristics and partial purification of a novel cy-tosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of la,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem 269: 4070–4077, 1994.
  • Merrill AH, Echten GV, Wang E et al: Fumonisin Bi inhibits sphingosine (sphinganine) n-acyltrans-ferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J Biol Chem 36: 27299–27306, 1993.
  • Spence MW, Byers DM, Palmer FBSC: A new Zn2+-stimulated sphingomyelinase in fetal bovine serum. J Biol Chem 264: 5358–5363, 1989.
  • Sawai H, Okazaki T, Domae N: Ceramide: a lipid mediator of apoptotic signal transduction. Nippon Rinsho 54: 1803–1808, 1996 (in Japanese).
  • Bose R, Verheij M, Haimovitz-Friedman A et al: Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82: 405–414, 1995.
  • Ling Y, Priebe W, Perez-Soler R: Apoptosis induced by anthracycline antibiotics in P388 parent and multidrug-resistant cells. Cancer Res 53: 1845–1852, 1993.
  • Dbaibo GS, Perry DK, Gamard CJ et al: Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-a: CrmA and Bcl-2 target distinct components in the apoptotic pathway./Exp <i>Med 185: 481–490, 1997.
  • Mizushima N, Koike R, Kohsaka H et al: Ceramide induces apoptosis via CPP32 activation. FEBS Lett 395: 267–271, 1996.
  • Latinis KM, Koretzky GA: Fas ligation induces apoptosis and Jun kinase activation independently of CD45 and Ick in human T cells. Blood 87: 871–875, 1996.
  • Wilson DJ, Fortner KA, Lynch DH et al.: JNK, but not MAPK, activation is associated with Fas-mediated apoptosis in human T cells. Eur J Immunol 26: 989–994, 1996.
  • Gulbins E, Bissonnette R, Mahboubi A et al: Fas-induced apoptosis is mediated via a ceramide-induced ras signaling pathway. Immunity 2: 341–351, 1995.
  • Maria RD, Boirivant M, Cifone MG et al.: Functional expression of Fas and Fas ligand on human lamina propria T lymphocytes. J Clin Invest 97: 316–322, 1996.
  • Gill BM, Nishikata H, Chan G et al.: Fas antigen and sphingomyelin-ceramide turnover-mediated signaling: role in life and death of T lymphocytes. Immunol Res 142: 113–125, 1994.
  • Chan G, Ochi A: Sphingomyelin-ceramide turnover in CD28 costimulatory signaling. Eur J Immunol 25: 1999–2004, 1995.
  • Laulederkind SJF, Bielawska A, Raghow R et al: Ceramide induces interleukin 6 gene expression in human fibroblasts. J Exp Med 182: 599–604, 1995.
  • Nunez G, Merino R, Grillot D et al: Bcl-2 and Bcl-x: regulatory switches for lymphoid death and survival. Immunol Today 15: 582–588, 1994.
  • Tsujimoto Y, Cossman J, Jaffe E et al: Involvement of the bcl-2 gene in human follicular lymphoma. Science 228: 1440–1443, 1985.
  • Iwai K, Miyawaki T, Takizawa T et al: Differential expression of bcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes, and neutrophils. Blood 84: 1201–1208, 1994.
  • Boise LH, Gonzalez-Garcia M, Postema CE et al: bcl-x, a 2>c/-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608, 1993.
  • Chinnaiyan AM, Orth K, O’Rourke K et al: Molecular ordering of the cell death pathway. Bcl-2 and Bc1-xl function upstream of the ce<i-3-like apoptotic proteases. J Biol Chem 271: 4573–4576, 1996.
  • Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell 74: 609–619, 1993.
  • Yin XM, Oltvai ZN, Korsmeyer SJ: BHl and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369: 321–323, 1994.
  • Takayama S, Sato T, Krajewski S et al: Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80: 279–284, 1995.
  • Yang E, Zha J, Jockel J et al: Bad, a heterodimeric partner for bcl-x^ and bcl-2, displaces bax and promotes cell death. Cell 80: 285–291, 1995.
  • Chu K, Niu X, Williams LT: A Fas-associated protein factor, FAF-1, potentiates Fas-mediated apoptosis. Proc Natl Acad Sci USA 92: 11894–11898, 1995.
  • Sato T, Irie S, Kitada S et al: FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 268:411–415, 1995.
  • Maekawa K, Imagawa N, Nagamatsu M et al: Molecular cloning of a novel protein-tyrosine phosphatase containing a membrane-binding domain and GLGF repeats. FEBS Lett 337: 200–206, 1994.
  • Foumel S, Genestier L, Robinet E et al: Human T cells require JL-2 but not Gi/S transition to acquire susceptibility to Fas-mediated apoptosis. J Immunol 157: 4309–4315, 1996.
  • Su X, Zhou T, Wang Z et al: Defective expression of hematopoietic cell protein tyrosine phophatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis. Immunity 2: 353–362, 1995.
  • Stanger BZ, Leder P, Lee TH et al: RIP: A novel protein containing a death domain that interact with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513–523, 1995.
  • Ting AT, Pimentel-Muiiios FX, Seed B: RIP mediates tumor necrosis factor receptor 1 activation of NF-zcB but not Fas/APO-1-initiated apoptosis. EMBO J 15: 6189–6196, 1996.
  • Tian Q, Taupin JL, Elledge S et al: Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis. J Exp Med 182: 865–874, 1995.
  • Jain J, McCaffrey PG, Miner Z et al: The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature 365: 352–355, 1993.
  • Alderson MR, Armitage RJ, Maraskovsky E et al: Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178: 2231–2235, 1993.
  • Owen-Schaub LB, Radinsky R, Kruzel E et al: Anti-Fas on nonhematopoietic tumors: Levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res 54: 1580–1586, 1994.
  • Mapara JY, Bargou R, Zugck C et al: APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bcl-2 oncogene expression. Eur J Immunol 23: 702–708, 1993.
  • Raziuddin S, Nur MA, Al-Wabel AA: Increased circulating HLA-DR+CD4+ T cells in systemic lupus erythematosus: alterations associated with prednisolone therapy. ScandJ Immunol 31: 139–145, 1990.
  • Horwitz DA, Stasny P, Ziff M: Circulating deoxyribonucleic acid-synthesizing mononuclear leukocytes. I. Increased numbers of proliferating mononuclear leukocytes in inflammatory disease. J Lab Clin Med 76: 391–402, 1970.
  • Dayal AK, Kammer GM: The T cell enigma in lupus. Arthritis Rheum 39: 23–33, 1996.
  • Fujisawa K, Asahara H, Okamoto K et al: Therapeutic effect of the anti-Fas antibody on arthritis in HTLV-1 tax transgenic mice. J Clin Invest 98: 271–278, 1996.
  • Sekigawa I, Koshino K, Hishikawa T et al: Inhibitory effect of the immunosuppressant FK506 on apoptotic cell death induced by HIV-1 gpl20. J Clin Immunol 15: 312–317, 1995.
  • Tamura K, Woo J, Murase N et al: Suppression of autoimmune thyroid disease by FK 506: influence on thyroid-infiltrating cells, adhesion molecule expression and anti-thyroglobulin antibody production. Clin Exp Immunol 91: 368–375, 1993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.