30
Views
72
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Cartilage destruction by matrix degradation products

Pages 197-205 | Received 08 Mar 2006, Accepted 15 May 2006, Published online: 02 Jan 2014

References

  • Poole AR. Cartilage in health and disease. In: Koopman WJ, editor. Arthritis and allied conditions: a textbook of rheumatology, 14th ed. vol 1. Baltimore: Lippincott, Williams and Wilkins; 2001. p. 226–84.
  • Eyre DR. Collagen cross-linking amino acids. Methods Enzymol 1987;144:115–39.
  • Kempson GE, Muir H, Pollard C, Tuke M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta 1973;297:456–72.
  • Mow VC, Setton LA, Ratcliffe DS, Howell DS, Buckwalter JA. Structure-function relationships of articular cartilage and the effects of joint instability and trauma on cartilage function. In: Brandt KD, editor. Cartilage changes in osteoarthritis. Indiana School of Medicine/Ciba-Geigy; 1990. p. 22–42.
  • Carney SL, Billingham MEJ, Muir H, Sandy JD. Demonstration of increased proteoglycan turnover in cartilage explants from dogs with experimental osteoarthritis. J Orthop Res 1984;2:201–6.
  • McDevitt CA, Muir H. Biochemical changes in the cartilage of the knee in experimental and natural osteoarthritis in the dog. J Bone Joint Surg [Br] 1976;58:94–101.
  • Bonassar LJ, Frank EH, Murray JC, Paguio CG, Moore VL, Lark MW, et al. Changes in cartilage composition and physical properties due to stromelysin degradation. Arthritis Rheum 1995;38:173–83.
  • Kempson GE. Mechanical properties of articular cartilage. In: Freeman MAR, editor. Adult articular cartilage. Tunbridge Wells: Pitman Medical; 1979. p. 333–414.
  • Dodge G, Poole AR. Immunohistochemical detection and immunohistochemical analysis of type II collagen degradation in human normal, rheumatoid and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin-1. J Clin Invest 1989;83:647–61.
  • Hollander AP, Pidoux I, Reiner A, Rorabeck C, Bourne R, Poole AR. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest 1994;93:1722–32.
  • Arend WP, Dayer JM. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum 1995;38:151–60.
  • Burton-Wurster N, Butler M, Harter S, Colombo C, Quintavalla J, Swartzendurber D, et al. Presence of fibronectin in articular cartilage in two animal models of osteoarthritis. J Rheumatol 1986;13:175–82.
  • Lavietes BB, Carsons S, Diamond HS, Laskin RS. Synthesis, secretion, and deposition of fibronectin in cultured human synovium. Arthritis Rheum 1985;28:1016–26.
  • Hynes RO. Fibronectins. Berlin Heidelberg New York: Springer; 1990.
  • Schwarzbauer JE. Alternative splicing of fibronectin: three variants, three functions. BioEssays 1991;13:527–33.
  • Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem 1988;57:375–413.
  • Yamada KM. Adhesive recognition sequences. J Biol Chem 1991;266:12809.12.
  • McCarthy JB, Chelberg MK, Mickelson DJ, Furcht LT. Localization and chemical synthesis of fibronectin peptides with melanoma adhesion and heparin binding activities. Biochemistry 1988;27:1380.8.
  • Drake SL, Klein DJ, Mickelson DJ, Oegema TR, Furcht LT, McCarthy JB. Cell surface phosphatidylinositol-anchored heparan sulfate proteoglycan initiates mouse melanoma cell adhesion to a fibronectin-derived, heparin-binding synthetic peptide. J Cell Biol 1992;117:1331.41.
  • Iida J, Skubitz AP, Furcht LT, Wayner EW, McCarthy JB. Coordinate role for cell surface chondroitin sulfate proteoglycan and ��4��1 in mediating melanoma cell adhesion to fibronectin. J Cell Biol 1992;118: 431.44.
  • Lories V, Cassiman JJ, van der Berghe H, David G. Differential expression of cell surface heparan sulfate proteoglycans in human mammary epithelial cell and fibroblasts. J Biol Chem 1992;267: 1116.22.
  • Woods A, McCarthy JB, Furcht LT, Couchman JR. A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation. Mol Biol Cell 1993;4:605.13.
  • Giuseppetti JM, McCarthy JB, Letourneau PC. Isolation and partial characterization of a cell-surface heparan sulfate proteoglycan from embryonic rat spinal cord. J Neurosci Res 1994;37: 584.95.
  • Wayner EA, Garcia-Pardo A, Humphries MJ, McDonald JA, Carter WG. Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J Cell Biol 1989;109:1321.30.
  • Guan J-L, Hynes RO. Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor ��4��1. Cell 1990;60: 53.61.
  • Mould AP, Humphries MJ. Identification of a novel recognition sequence for the ��4��1 in the COOH-terminal heparin-binding domain of fibronectin. EMBO J 1991;10:4089.95.
  • Mould AP, Wheldon LA, Koriyama A, Wayner EA, Yamada KM, Humphries MJ. Affinity chromatographic isolation of the melanoma adhesion receptor for the IIICS region of fibronectin recognized by the integrin ��4��1. J Biol Chem 1990; 265:4020.4.
  • Mould AP, Koriyama A, Yamada KM, Humphries MJ. The CS5 peptide is a second site in the IIICS region of fibronectin recognized by the integrin ��4��1. J Biol Chem 1991;266:3579.85.
  • Miller DR, Mankin HJ, Shoji H, D�fAmbrosia RD. Identification of fibronectin in preparations of osteoarthritic human cartilage. Connect Tissue Res 1984;12:267.75.
  • Jones KL, Brown M, Ali SY, Brown RA. An immunohistochemical study of fibronectin in human osteoarthritic and disease-free articular cartilage. Ann Rheum Dis 1987;46:809.15.
  • Homandberg GA, Wen C, Hui F. Cartilage damaging activities of fibronectin fragments derived from cartilage and synovial fluid. Osteoarthritis Cartilage 1998;6:231.44.
  • Xie DL, Meyers R, Homandberg GA. Fibronectin fragments in osteoarthritic synovial fluid. J Rheumatol 1992;19:1448.52.
  • Scott DL, Delamare JP, Walton KW. The distribution of fibronectin in the pannus in rheumatoid arthritis. Br J Exp Pathol 1981;62:362.68.
  • Shiozawa S, Ziff M. Immunoelectron microscopic demonstration of fibronectin in rheumatoid pannus and at the cartilage-pannus junction. Ann Rheum Dis 1983;42:254.63.
  • Xie DL, Homandberg GA. Fibronectin fragments bind to and penetrate cartilage tissue resulting in proteinase expression and cartilage damage. Biochim Biophys Acta 1993;1182:189. 96.
  • Homandberg GA, Meyers R, Xie DL. Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem 1992;267:3597.604.
  • Yasuda T, Poole AR. A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1- mediated pathway. Arthritis Rheum 2002;46:138.48.
  • Homandberg GA, Meyers R, Williams JM. Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol 1993;20:1378.82.
  • Xie DL, Hui F, Homandberg GA. Fibronectin fragments alter matrix protein synthesis in cartilage tissue cultured in vitro. Arch Biochem Biophys 1993;307:110.8.
  • Abbaszade I, Liu RQ, Yang F, Rosenfeld SA, Ross OH, Link JR, et al. Cloning and characterization of ADAMTS11, an aggrecanase from ADAMTS family. J Biol Chem 1999;274:23443.50.
  • Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollos JM, Liu R, et al. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 1999;284:1664.6.
  • Fosang AJ. Aggrecanase and cartilage proteoglycan degradation. In: Bradshaw D, Nixon JS, Bottomley K, editors. Metalloproteinases as targets for anti-inflammatory drugs. Basel: Birkhauser; 1999. p. 117.43.
  • Singer II, Scott S, Kawka DW, Bayne EK, Weidner JR, Williams HR, et al. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 1997;100: 93.106.
  • Stanton H, Ung L, Fosang AJ. The 45 kDa collagen-binding fragment of fibronectin induces matrix metalloproteinase-13 synthesis by chondrocytes and aggrecan degradation by aggrecanases. Biochem J 2002;364: 181.90.
  • Homandberg GA, Davis G, Maniglia C, Shrikhande A. Cartilage chondrolysis by fibronectin fragments causes cleavage of aggrecan at the same site as found in osteoarthritic cartilage. Osteoarthritis Cartilage 1997;5:450.3.
  • Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem 1999;274:21491.4.
  • Jeffery J. Interstitial collagenases. In: Parks WC, Mecham RP, editors. Matrix metalloproteinases. San Diego: Academic Press; 1998. p. 15.38.
  • Freije JM, Diez-Itza I, Balbin B, Sanchez LM, Blasco R, Tolivia J, et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem 1994;269:16766.73.
  • Knauper V, Cowell S, Smith B, Lopez-Otin C, O�fShea M, Morris H, et al. The role of the C-terminal domain of human collagenase- 3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem 1997;272: 7608.16.
  • Krane SM, Byrne MH, Lemaitre V, Henriet P, Jeffrey JJ, Witter JP, et al. Different collagenase gene products have different roles in degradation of type I collagen. J Biol Chem 1996;271:28509.15.
  • Fosang AJ, Last K, Knauper V, Murphy G, Neame PJ. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett 1996;380: 17.20.
  • Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G. Biochemical characterization of human collagenase-3. J Biol Chem 1996;271:1544.50.
  • Stahle-Backdahl M, Sandstedt B, Bruce K, Lindahl A, Jimenez MG, Vega JA, et al. Collagenase-3 (MMP-13) is expressed during human fetal ossification and re-expressed in postnatal bone remodeling and in rheumatoid arthritis. Lab Invest 1997;76: 717). 28.
  • Johansson N, Saarialho-Kere U, Airola K, Herva R, Nissinen L, Westermarck J, et al. collagenase-3 (MMP-13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development. Dev Dyn 1997;208:387.97.
  • Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 1997;99:1534.45.
  • Lindy O, Konttinen YT, Sorsa T, Ding Y, Santavirta S, Ceponis A. Matrix metalloproteinase 13 (collagenase 3) in human rheumatoid synovium. Arthritis Rheum 1997;40:1391.9.
  • Balbin M, Pendas AM, Uria JA, Jimenez MG, Freije JP, Lopez- Otin C. Expression and regulation of collagenase-3 (MMP-13) in human malignant tumors. APMIS 1999;107: 45.53.
  • Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 1989; 109:877.89.
  • Forsyth CB, Pulai J, Loeser RF. Fibronectin fragments and blocking antibodies to ��2��1 and ��5��1 integrins stimulate mitogenactivated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum 2002;46: 2368–76.
  • Xie D-L, Hui F, Meyers R, Homandberg GA. Cartilage chondrolysis by fibronectin fragments is associated with release of several proteinases: stromelysin plays a major role in chondrolysis. Arch Biochem Biophys 1994;311:205–12.
  • Yasuda T, Poole AR, Shimizu M, Nakagawa T, Julovi SM, Tamamura H, et al. Involvement of CD44 in induction of matrix metalloproteinases by a carboxyl-terminal heparin-binding fragment of fibronectin in human articular cartilage in culture. Arthritis Rheum 2003;48:1271–80.
  • Yasuda T, Shimizu M, Nakagawa T, Julovi SM, Nakamura T. Matrix metalloproteinase production by COOH-terminal heparin-binding fibronectin fragment in rheumatoid synovial cells. Lab Invest 2003;83:153–62.
  • Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993;329:2002–12.
  • Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992;6:3051–64.
  • Stadler J, Stefanovic-Racic M, Billiar TR, Curran RD, McIntyre LA, Georgescu HI, et al. Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol 1991;147:3915–20.
  • Sakurai H, Kohsaka H, Liu MF, Higashiyama H, Hirata Y, Kanno K, et al. Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides. J Clin Invest 1995;96:2357–63.
  • Ialenti A, Moncada S, Di Rosa M. Modulation of adjuvant arthritis by endogenous nitric oxide. Br J Pharmacol 1993;110: 701–6.
  • McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, et al. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 1993;178:749–54.
  • Gemba T, Valbracht J, Alsalameh S, Lotz M. Focal adhesion kinase and mitogen-activated protein kinases are involved in chondrocyte activation by the 29-kDa amino-terminal fibronectin fragment. J Biol Chem 2002;277:907–11.
  • Yasuda T, Kakinuma T, Julovi SM, Yoshida M, Hiramitsu T, Akiyoshi M, et al. COOH-terminal heparin-binding fibronectin fragment induces nitric oxide production in rheumatoid cartilage through CD44. Rheumatology (Oxford) 2004;43:1116–20.
  • Homandberg GA, Hui F, Wen C. Association of proteoglycan degradation with catabolic cytokine and stromelysin release from cartilage cultured with fibronectin fragments. Arch Biochem Biophys 1996;334:325–31.
  • Homandberg GA, Hui F, Wen C, Purple C, Bewsey K, Koepp H, et al. Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem. J 1997; 321:751–7.
  • Bewsey KE, Wen C, Purple C, Homandberg GA. Fibronectin fragments induce the expression of stromelysin-1 mRNA and protein in bovine chondrocytes in monolayer culture. Biochim Biophys Acta 1996;1317:55–64.
  • Arner EC, Tortorella MD. Signal transduction through chondrocyte integrin receptors induces matrix metalloproteinase synthesis and synergizes with interleukin-1. Arthritis Rheum 1995;38: 1304–14.
  • Johansson S, Svineng G, Wennerberg K, Armulik A, Lohikangas L. Fibronectin-integrin interactions. Front Biosci 1997;2:D126–46.
  • Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11–25.
  • Giancotti FG, Mainiero F. Integrin-mediated adhesion and signaling in tumorigenesis. Biochem Biophys Acta 1994;1198:47–64.
  • Clark EA, Brugge JS. Integrins and signal transduction pathway: the road taken. Science 1995;268:233–9.
  • Schwarz MA, Scaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 1995;11:549–99.
  • Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999;285: 1028–32.
  • Yamada KM, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 1995;7:681–9.
  • Giancotti FG. Integrin signaling: specificity and cell cycle progression. Curr Opin Cell Biol 1997;9:691–700.
  • Zhang Z, Vuori K, Reed JC, Ruoslahti E. The �5�1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Soc Sci USA 1995;92:6161–5.
  • Sastry SK, Lakonishok M, Thomas DA, Muschler J, Horwitz AF. Integrin � subunit ratios, cytoplasmic domains, and growth factor synergy regulate muscle proliferation and differentiation. J Cell Biol 1996;133:169–84.
  • Yamada KM. Adhesive recognition sequences. J Biol Chem 1991;266:12809–12.
  • Damsky CH, Werb Z. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr Opin Cell Biol 1992;4:772–81.
  • Homandberg GA, Costa V, Ummadi V, Pichika R. Antisense oligonucleotides to the integrin receptor subunit alpha5 decrease fibronectin fragment mediated cartilage chondrolysis. Osteoarthritis Cartilage 2002;10:381–93.
  • Homandberg GA, Costa V, Wen C. Fibronectin fragments active in chondrocytic chondrolysis can be chemically cross-linked to the alpha5 integrin receptor subunit. Osteoarthritis Cartilage 2002; 10:938–49.
  • Dzamba BJ, Bultmann H, Akiyama SK, Peters DM. Substratespecific binding of the amino terminus of fibronectin to an integrin complex in focal adhesions. J Biol Chem 1994;269:19646–52.
  • McKeown-Longo PJ, Mosher DF. Interaction of the 70,000- mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. J Cell Biol 1985;100: 364–74.
  • Quade BJ, McDonald JA. Fibronectin's amino-terminal matrix assembly site is located within the 29-kDa amino-terminal domain containing five type I repeats. J Biol Chem 1988;263: 19602–9.
  • Schwarzbauer JE. Identification of the fibronectin sequences required for assembly of a fibrillar matrix. J Cell Biol 1991;113: 1463–73.
  • Sottile J, Schwarzbauer J, Selegue J, Mosher DF. Five type I modules of fibronectin form a functional unit that binds to fibroblasts and Staphylococcus aureus. J Biol Chem 1991;266: 12840–3.
  • Ishikawa H, Hirata S, Nishibayashi Y, Imura S, Kubo H, Ohno O. The role of adhesion molecules in synovial pannus formation in rheumatoid arthritis. Clin Orthop 1994;300:297–303.
  • Wayner EA, Garcia-Pardo A, Humphries MJ, McDonald A, Carter WG. Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J Cell Biol 1989;109:1321–30.
  • Guan J-L, Hynes RO. Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor �4�1. Cell 1990;60: 53–61.
  • Lapadula G, Iannoue F, Zuccaro C, Grattgliano V, Covell M, Patella V, et al. Integrin expression on chondrocytes: Correlations with the degree of cartilage damage in human osteoarthritis. Clin Exp Rheum 1997;15:247–54.
  • Ostergaard K, Salter M, Petersen J, Bendtzen K, Hvalris J, Andersen CB. Expression of � and � subunits of the integrin superfamily in articular cartilage from macroscopically normal and osteoarthritic human femoral heads. Ann Rheum Dis 1998; 57:303–8.
  • Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990;61: 1303–13.
  • Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 1992;89:12160–4.
  • Salter DM, Godolphin JL, Gourlay MS, Lawson MF, Hughs DE, Dunne E. Analysis of human articular chondrocyte CD44 isoform expression and function in health and disease. J Pathol 1996;179: 396–402.
  • Lesley J, Hyman R. CD44 structure and function. Front Biosci 1998;3:D616–30.
  • Bennet KL, Jackson DG, Simon JC, Tanczos E, Peach R, Modrell B, et al. CD44 isoforms containing exon V3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol 1995;128:687–98.
  • Jalkanen S, Jalkanen M. Lymphocyte CD44 binds the COOHterminal heparin-binding domain of fibronectin. J Cell Biol 1992;116:817–25.
  • Barkalow FJ, Schwarzbauer JE. Interactions between fibronectin and chondroitin sulfate are modulated by molecular context. J Biol Chem 1994;269:3957–62.
  • Woods A, McCarthy JB, Furcht LT, Couchman JR. A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation. Mol Biol Cell 1993;4:605–13.
  • Ostergaard K, Salter DM, Andersen CB, Petersen J, Bendtzen K. CD44 expression is up-regulated in the deep zone of osteoarthritic cartilage from human femoral heads. Histopathology 1997;31: 451–9.
  • Takagi T, Okamoto R, Suzuki K, Hayashi T, Sato M, Sato M, et al. Up-regulation of CD44 in rheumatoid chondrocytes. Scand J Rheumatol 2001;30:110–3.
  • Chow G, Knudson CB, Homandberg G, Knudson W. Increased expression of CD44 in bovine articular chondrocytes by catabolic cellular mediators. J Biol Chem 1995;270:27734–41.
  • Hauselmann HJ, Aydelotte MB, Schumacher BL, Kuettner KE, Gitelis SH, Thonar EJ. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix 1992;12:116–29.
  • Rutter JL, Benbow U, Coon CI, Brinckerhoff CE. Cell-type specific regulation of human interstitial collagense-1 gene expression by interleukin-1� (IL-1�) in human fibroblasts and BC-8701 breast cancer cells. J Cell Biochem 1997;66:322–36.
  • Pendas AM, Balbin M, Llano E, Jimenez MG, Lopez-Otin C. Structural analysis and promoter characterization of human collagenase-3 gene (MMP-13). Genomics 1997;40: 222–33.
  • Karin M, Liu ZG, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997;9: 240–6.
  • Segar R, Krebs EG. The MAPK signaling cascade. FASEB J 1995;9:726–35.
  • Garrington TP, Johnston GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999;11:211–8.
  • Yasuda T, Julovi SM, Hiramitsu T, Yoshida M, Nakamura T. Requirement of mitogen-activated protein kinase for collagenase production by the fibronectin fragment in human articular chondrocytes in culture. Mod Rheumatol 2004;14:54–60.
  • Mainiero F, Gismondi A, Soriani A, Cippitelli M, Palmieri G, Jacobelli J, et al. Integrin-mediated ras-extracellular regulated kinase (ERK) signaling regulates interferon gamma production in human natural killer cells. J Exp Med 1998;188:1267–75.
  • Chen Q, Kinch MS, Lin TH, Burridge K, Juliano RL. Integrinmediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem 1994;269:26602–5.
  • Vincenti MP, Coon CI, Brinckerhoff CE, 1998. Nuclear factor �B/ p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1�-stimulated synovial fibroblasts. Arthritis Rheum 1998;41: 1987–94.
  • Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE. Interleukin-1 induction of collagenase-3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor �B: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum 2000;43: 801–811.
  • Baldwin ASJ. The NF-�B and I�B proteins: new discoveries and insights. Ann Rev Immunol 1996;14:649–83.
  • Biswas C, Dayer JM. Stimulation of collagenase production by collagen in mammalian cell cultures. Cell 1979;18:1035–41.
  • Dayer JM, Trentham DE, David JR, Krane SM. Collagens stimulate the production of mononuclear cell factor (MCF) and prostaglandins (PGE2) by human monocytes. Trans Assoc Am Phys 1980;93:326–35.
  • Dayer JM, Trentham DE, Krane SM. Collagens act as ligands to stimulate human monocytes to produce mononuclear cell factor (MCF) and prostaglandins (PGE2). Collagen Rel Res 1982;2: 523–40.
  • Jeng KG, Liu M, Lan J, Wu C, Wong DW, Cheung BM. Collagen induces cytokine production by synovial fluid mononuclear cells in rheumatoid arthritis. Immunol Lett 1995;45:13–7.
  • Goto M, Yoshinoya S, Miyamoto T, Sasano M, Okamoto M, Nishioka K, et al. Stimulation of interleukin-1� and interleukin- 1� release from human monocytes by cyanogen bromide peptides of type II collagen. Arthritis Rheum 1988;31:1508–14.
  • Jennings, L, Wu L, King KB, Hammerle H, Cs-Szabo G, Mollenauer J. The effects of collagen fragments on the extracellular metabolism of bovine and human chondrocytes. Connect Tiss Res 2001;42:71–86.
  • Yasuda T, Mwale F, Burgess J, Poole AR. Type II collagen fragments alter type II and IX collagen turnover in bovine articular chondrocyte culture. Orthopaed Trans 1999;336.
  • Knudson W, Casey B, Nishida Y, Eger W, Kuettner KE, Knudson CB. Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum 2000;43:1165–74.
  • Iacob S, Knudson CB. Hyaluronan fragments activate nitric oxide synthase and the production of nitric oxide by articular chondrocytes. Int J Biochem Cell Biol 2006;38:123–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.