113
Views
47
CrossRef citations to date
0
Altmetric
Review Article

Osteoclast cell fusion: mechanisms and molecules

&
Pages 220-227 | Received 12 Oct 2007, Accepted 25 Jan 2008, Published online: 02 Jan 2014

References

  • Bromley M, Bertfield H, Evanson JM, Woolley DE. Bidirectional erosion of cartilage in rheumatoid knee joints. Ann Rheum Dis. 1985;44:676–81.
  • Kuratani T, Nagata K, Kukita T, Hotokebuchi T, Nakashima A, Iijima T. Induction of abundant osteoclast-like multinucleated giant cells in adjuvant arthritic rats with accompanying disor-dered high bone turnover. Histol Histopathol. 1988;13:751–9.
  • Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–8.
  • Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4:638–49.
  • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.
  • Vignery A. Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol. 2005;15:188-93.
  • Chen EH, Olson EN. Unveiling the mechanisms of cell-cell fusion. Science. 2005;308:369–73.
  • Nixon B, Aitken RJ, McLaughlin EA. New insights into the molecular mechanisms of sperm-egg interaction. Cell Mol Life Sci. 2007;64:1805–23.
  • Kaji K, Kudo A. The mechanism of sperm-oocyte fusion in mammals. Reproduction. 2004;127:423–9.
  • Taylor MV. Muscle differentiation: signaling cell fusion. Curr Biol. 2003;13:R964–6.
  • Prisk V, Huard J. Muscle injuries and repair: the role of prosta-glandins and inflammation. Histol Histopathol. 2003;18:1243–56.
  • Chen EH, Grote E, Mohler W, Vignery A. Cell-cell fusion. FEBS Lett. 2007;581:2181–93.
  • Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, Nagata K, Iijima T, Horiuchi M, Matsusaki H, Hieshima K, Yoshie 0, Nomiyama H. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med. 2004;200:941–6.
  • Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005;202:345–51.
  • Baylies MK, Bate M, Ruiz-Gomez M. Myogenesis: a view from Drosophila. Cell. 1998;93:921–7.
  • Beckett K, Baylies MK. 3D analysis of founder cell and fusion competent myoblast arrangements outlines a new model of myoblast fusion. Dev Biol. 2007;309:113–25.
  • Bondesen BA, Jones KA, Glasgow WC, Pavlath GK. Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. FASEB J. 2007;21:3338–45.
  • Vignery A. Macrophage fusion: the making of osteoclasts and giant cells. J Exp Med. 2005;202:337–40.
  • Vignery A. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. Int J Exp Pathol. 2000;81:291–304.
  • Saginario C, Qian HY, Vignery A. Identification of an inducible surface molecule specific to fusing macrophages. Proc Natl Acad Sci USA. 1995;92:12210–4.
  • Saginario C, Sterling H, Beckers C, Kobayashi R, Solimena M, Ullu E, Vignery A. MFR, a putative receptor mediating the fusion of macrophages. Mol Cell Biol. 1998;18:6213–23.
  • Han X, Sterling H, Chen Y, Saginario C, Brown RI, Frazier WA, Lindberg FP, Vignery A. CD47, a ligand for the macrophage fusion receptor, participates in macrohage multinucleation. J Biol Chem. 2000;275:37984–92.
  • Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism and disease. Annu Rev Immunol. 1999;17: 657–700.
  • Sterling H, Saginario C, Vignery A. CD44 occupancy prevents macrophage multinucleation. J Cell Biol. 1998;143: 837–47.
  • Ohgimoto S, Tabata N, Suga S, Nishio M, Ohta H, Tsurudome M, Komada H, Kawano M, Watanabe N, Ito Y. Molecular charac-terization of fusion regulatory protein-1 (FRP-1) that induces multinucleated giant cell formation of monocytes and HIV gp160-mediated cell fusion. FRP-1 and 4F2/CD98 are identical molecules. J Immunol. 1995;155: 3585–92.
  • Cui W, Cuartas E, Ke J, Zhang Q, Einarsson HB, Segdwick JD, Li J, Vignery A. CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts. Proc Natl Acad Sci USA. 2007;104:14436–41.
  • Mbalaviele G, Chen H, Boyce BF, Mundy GR, Yoneda T. The role of cadherin in the generation of multinucleated osteoclasts from mononuclear precursors in murine marrow. J Cfin Invest. 1995;95:2757–65.
  • Lemaire I, Falzoni S, Leduc N, Zhang B, Pellegatti P, Adinolfi E, Chiozzi P, Di Virgilio F. Involvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells. J Immu-nol. 2006;177: 7257–65.
  • Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, Pignolo RJ, Koczon-Jaremko B, Lorenzo J, Choi Y. v-ATPase VO subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med. 2006;12: 1403–9.
  • Boucheix C, Rubinstein E. Tetraspanins. Cell Mol Life Sci. 2001;58:1189–205.
  • Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol. 2003;19:397–422.
  • Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 2005;6:801–11.
  • Tarrant JM, Robb L, van Spriel AB, Wright MD. Tetraspanins: molecular organizers of the leukocyte surface. Trends Immunol. 2003;24:610–7.
  • Wright MD, Moseley GW, van Spriel AB. Tetraspanin micro-domains in immune cell signaling and malignant disease. Tissue Antigens. 2004;64:533–42.
  • Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet. 2000;24: 279–82.
  • Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C. Severely reduced female fertility in CD9-deficient mice. Science. 2000;287: 319–21.
  • Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E. Requirement of CD9 on the egg plasma membrane for fertiliza-tion. Science. 2000;287:321–4.
  • Tachibana I, Hemler ME. Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J Cell Biol. 1999;146:893–904.
  • Ishibashi T, Ding L, Ikenaka K, Inoue Y, Miyado K, Mekada E, Baba H. Tetraspanin protein CD9 is a novel paranodal component regulating paranodal junctional formation. J Neurosci. 2004;24: 96–102.
  • Ishii M, Iwai K, Koike M, Ohshima S, Kudo-Tanaka E, Ishii T, Mima T, Katada Y, Miyatake K, Uchiyama Y, Saeki Y. RANKL-induced expression of tetraspanin CD9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogene-sis. J Bone Miner Res. 2006;21: 965–76.
  • Yi T, Kim HJ, Cho JY, Woo KM, Ryoo HM, Kim GS, Baek JH. Tetraspanin CD9 regulates osteoclastogenesis via regulation of p44/42 MAPK activity. Biochem Biophys Res Commun. 2006;347: 178–84.
  • Iwai K, Ishii M, Ohshima S, Miyatake K, Saeki Y. Abundant expression of tetraspanin CD9 in activated osteoclasts in ovari-ectomy-induced osteoporosis and in bone erosions of collagen-induced arthritis. Rheumatol Int. 2008;28: 225–31.
  • Takeda Y, Tachibana I, Miyado K, Kobayashi M, Miyazaki T, Funakoshi T, Kimura H, Yamane H, Saito Y, Goto H, Yoneda T, Yoshida M, Kumagai T, Osaki T, Hayashi S, Kawase I, Mekada E. Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol. 2003;161: 945–56.
  • Iwai K, Ishii M, Ohshima S, Miyatake K, Saeki Y. Expression and function of transmembrane-4 superfamily (tetraspanin) pro-teins in osteoclasts: reciprocal roles of Tspan-5 and NET-6 during osteoclastogenesis. Allergol Int. 2007;56: 457–63.
  • Tanio Y, Yamazaki H, Kunisada T, Miyake K, Hayashi SI. CD9 molecule expressed on stromal cells is involved in osteoclasto-genesis. Exp Hematol. 1999;27: 853–9.
  • Hayashi S, Miyake K, Kinkade PW. The CD9 molecule on stromal cells. Leuk Lymphoma. 2000;38: 265–70.
  • Yamane H, Tachibana I, Takeda Y, Saito Y, Tamura Y, He P, Suzuki M, Shima Y, Yoneda T, Hoshino S, Inoue K, Kijima T, Yoshida M, Kumagai T, Osaki T, Eishi Y, Kawase I. Propioni-bacterium acnes-induced hepatic granuloma formation is impaired in mice lacking tetraspanin CD9. J Pathol. 2005;206: 486–92.
  • Gordón-Alonso M, Yafiez-M6 M, Barreiro 0, Alvarez S, Mufioz-Fernandez MA, Valenzuela-Fernandez A, Sanchez-Madrid F. Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion. J Immunol. 2006;177: 5129–37.
  • Yafiez-M6 M, Alfranca A, Cabanas C, Marazuela M, Tejedor R, Ursa MA, Ashman LK, de Landazuri MO, Sanchez-Madrid F. Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with a3/31 integrin localized at endothelial lateral junctions. J Cell Biol. 1998;141: 791–804.
  • Sterk LM, Geuijen CA, van den Berg JG, Claessen N, Weening JJ, Sonnenberg A. Association of the tetraspanin CD151 with the laminin-binding integrins (x431,4/31,0(6/34 and c(7/31 in cells in culture and in vivo. J Cell Sci. 2002;115: 1161–73.
  • Cherukuri A, Shoham T, Sohn HW, Levy S, Brooks S, Carter R, Pierce SK. The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts. J Immunol. 2004;172: 370–80.
  • Cherukuri A, Carter RH, Brooks S, Bornmann W, Finn R, Dowd CS, Pierce SK. B cell signaling is regulated by induced palmi-toylation of CD81. J Biol Chem. 2004;279: 31973–82.
  • Claas C, Stipp CS, Hemler ME. Evaluation of TM4SF protein complexes and their relation to lipid rafts. J Biol Chem. 2001;276: 7974–84.
  • Brown DA, London E. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem. 2000;275: 17221–4.
  • Kropshofer H, Spindeldreher S, Röhn TA, Platania N, Grygar C, Daniel N,lpl A, Langen H, Horejsi V, Vogt AB. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes. Nat Immunol. 2002;3:61–8.
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–72.
  • Jahn R, Sudhof TC. Membrane fusion and exocytosis. Annu Rev Biochem. 1999;68:863–911.
  • Chernomordik LV Kozlov MM. Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem. 2003;72:175–207.
  • Pike LJ, Han X, Chung K-N, Gross RW. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their com-position is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemis-try. 2002;41: 2075–88.
  • Hope HR, Pike U. Phosphoinositides and phosphoinositide-uti-lizing enzymes in detergent-insoluble lipid domains. Mol Biol Cell. 1996;7:843–5.
  • Muller M, Zschornig 0, Ohki S, Arnold K. Fusion, leakage and surface hydrophobicity of vesicles containing phosphoinositides: influence of steric and electrostatic effects. J Membr Biol. 2003;192: 33–43.
  • Salaun C, James DJ, Chamberlain LH. Lipid rafts and the regu-lation of exocytosis. Traffic. 2004;5:255–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.