12
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Molecular and cellular analyses of HLA class II-associated susceptibility to autoimmune diseases in the Japanese population

, , , , , , , , , , & show all
Pages 103-112 | Published online: 02 Jan 2014

References

  • Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. In: Paul WE, Fathman CG, Metzger H, editors. Annual review of immunology, Vol. 11. Palo Alto (CA): Annual Reviews Inc; 1993. p. 403–50.
  • Hammer J, Valsasnini P, Tolba K, Bolin D, Higelin J, Takacs B, et al. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 1993;74:197–203.
  • Matsushita S, Takahashi K, Motoki M, Komoriya K, Ikagawa S, Nishimura Y. Allele specificity of structural requirement for peptides bound to HLA-DRB1*0405 and DRB1*0406 complexes: implication for the HLA-associated susceptibility to methimazole-induced insulin autoimmune syndrome. J Exp Med 1994;180:873–84.
  • Hammer J, Gallazzi F, Bono E, Karr RW, Guenot J, Valsasnini P, et al. Peptide binding specificity of HLA-DR4 molecules: correla-tion with rheumatoid arthritis association. J Exp Med 1995;181: 1847–55.
  • Ghosh P, Amaya M, Mellins E, Wiley DC. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 1995;378:457–62.
  • Stern LJ, Brown JH, Jardetzy TS, Gorga JC, Urban RG, Strominger JL, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994;368:215–21.
  • Vyse TJ, Todd JA. Reviews on autoimmunity. Genetic analysis of autoimmune disease. Cell 1996;85:311–8.
  • Nishimura Y, Thorsby E, Rønningen KS, Nelson LJ, Hansen JA, Bias WB, et al. General organization and overview of the disease component. In: Sasazuki T, Aizawa M, Tsuji K, editors. HLA 1991, vol. I. Oxford: Oxford University Press; 1992. p. 693–700.
  • Mosmann TR, Sad S. The expanding universe of T-cell subsets: Thl, Th2 and more. Immunol Today 1996;17:138–46.
  • Uchigata Y, Omori Y, Nieda M, Kuwata S, Tokunaga K, Juji T. HLA-DR4 genotype and insulin-processing in insulin autoimmune syndrome. Lancet 1992;340:1467.
  • Matsushita S, Nishi T, Yamaoka K, Motoki M, Yone K, Kanai T, et al. HLA-DO-binding peptide motifs. I. Comparative binding analysis of type II collagen-derived peptides to DR and DO mol-ecules of rheumatoid arthritis-susceptible haplotypes. Int Immunol 1996;8:757–64.
  • Fujisao S, Matsushita S, Nishi T, Nishimura Y. Identification of HLA-DR9 (DRB1*0901)-binding peptide motifs using a phage fUSE5 random peptide library. Hum Immunol 1996;45:131–6.
  • Oiso M, Nishimura Y, Nishi T, Matsushita S. Differential binding of peptides substituted at putative C-terminal anchor residues to HLA-D08 and D09 differing only at [357. Hum Immunol 1997; 52:47–53.
  • Oiso M, Matsushita S, Nishi T, Ishikawa T, Yoshida K, Kikutani H, et al. Differential binding of peptides substituted at a putative C-terminal anchor residue to I-Ag7[356His575er and I-Ag7[356Pro57Asp. Immunogenetics 1998;47:411–4.
  • Kanai T, Nomura Y, Segawa M, Takagi K, Senju S, Matsushita S, et al. Immunosuppressive peptides for a human T-cell clone autoreactive to a unique acetylcholine receptor ct subunit peptide presented by the disease-susceptible HLA-D06 in infant-onset myasthenia gravis. Hum Immunol 1997;56:28–38.
  • Nishimura Y, Kanai T, Oiso M, Kira J-I, Chen Y-Z, Matsushita S. Molecular analyses of HLA class //-associated susceptibility to subtypes of autoimmune diseases unique to Asians [review]. Int J Cardiol 1998;66 Suppl 1:S93–S104.
  • Nishimura Y, Oiso M, Fujisao S, Kanai T, Kira J-I, Chen Y-Z, et al. Peptide-based molecular analyses of HLA class //-associated susceptibility to autoimmune diseases [review]. Int Rev Immunol 1998;17:229–62.
  • Matsushita S, Fujisao S, Nishimura Y. Molecular mechanisms underlying HLA-DR-associated susceptibility to autoimmunity [review]. Int J Cardiol 1996;54 Suppl:545–554
  • Kira J-I, Kanai T, Nishimura Y, Yamasaki K, Matsushita S, Kawano Y, et al. Western vs. Asian types of multiple sclerosis: immunogenetically and clinically distinct disorders. Ann Neurol 1996;40:569–74.
  • Ito H, Yamasaki K, Kawano Y, Horiuchi I, Yun C, Nishimura Y, et al. HLA-DP-associated susceptibility to the opticospinal from of multiple sclerosis in the Japanese. Tissue Antigens 1998;52:179–82.
  • Tabata H, Kanai T, Yoshizumi H, Nishiyama S, Fujimoto S, Matsuda I, et al. Characterization of self-glutamic acid decarboxy-lase 65-reactive CD4* T-cell clones established from Japanese patients with insulin-dependent diabetes mellitus. Hum Immunol 1998;59:549–60.
  • Ito H, Matsushita S, Tokano Y, Nishimura H, Tanaka Y, Fujisao S, et al. Analysis of T-cell responses to the 32-glycoprotein I-derived peptide library in patients with anti-132-glycoprotein I antibody-associated autoimmunity. Hum Immunol 2000;61:366–77.
  • Fujii S, Senju S, Chen Y-Z, Ando M, Matsushita S, Nishimura Y. The CLIP-substituted invariant chain efficiently targets an anti-genic peptide to a HLA class II pathway in L cells. Hum Immunol 1998;59:607–14.
  • Steinman L. Reviews on autoimmunity. Multiple sclerosis: a coor-dinated immunological attack against myelin in the central nervous system. Cell 1996;85:299–302.
  • Kira J, Tobimatsu S, Goto I, Hasuo K. Primary progressive versus relapsing remitting multiple sclerosis in Japanese patients: a com-bined clinical, magnetic resonance imaging and multimodality-evoked potential study. J Neurol Sci 1993;117:179–85.
  • Olerup 0, Hillert J. HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 1991;38: 1–15.
  • Ota K, Matsui M, Milford EL, Mackin GA. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclero-sis. Nature 1990;346:183–7.
  • Wucherpfennig KW, Sette A, Southwood S, Oseroff C, Matsui M, Strominger JL, et al. Structural requirements for binding of an immunodominant myelin basic protein peptide to DFt2 isotypes and for its recognition by human T-cell clones. J Exp Med 1994;179:279–90.
  • Begovich AB, Helmuth RC, Oksenberg JR, Sakai T, Tabira T, Sasazuki T, et al. HLA-DPp and susceptibility to multiple sclerosis: an analysis of Caucasoid and Japanese patient populations. Hum Immunol 1990;28:365–72.
  • Hao Q, Saida T, Kawakami H, Mine H, Maruya E, Inoko H, et al. HLAs and genes in Japanese patients with multiple sclerosis: evidence for increased frequencies of HLA-Cw3, HLA-DFt2, and HLA-DQB1*0602. Hum Immunol 1992;35:116–24.
  • Kaufman DL, Clare-Salzler M, Tian J, Forsthuber T, Ting GS, Robinson P, et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993;366:69–72.
  • Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 1993;366:72–5.
  • Karlsen AE, Hagopian WA, Petersen JS, Boel E, Dyrberg T, Grubin CE, et al. Recombinant glutamic acid decarboxylase (rep-resenting the single isoform expressed in human islets) detects IDDM-associated 64000-M(r) autoantibodies. Diabetes 1992;41: 1355–9.
  • Atkinson MA, Kaufman DL, Campbell L, Gibbs KA, Shah SC, Bu DF, et al. Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes. Lancet 1992;339:458–9.
  • Chervonsky AV, Wang Y, Wong FS, Visintin I, Flavell RA, Janeway CA, et al. The role of Fas in autoimmune diabetes. Cell 1997;89:17–24.
  • Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mel-litus. Nature 1987;329:599–604.
  • Durinovic-Bello I, Steinle A, Ziegler AG, Schendel DJ. HLA-DQ-restricted, islet-specific T-cell clones of a type I diabetic patient. T-cell receptor sequence similarities to insulitis-inducing T-cells of nonobese diabetic mice. Diabetes 1994;43:1318–25.
  • Endl J, Otto H, Jung G, Dreisbusch B, Donie F, Stahl P, et al. Identification of naturally processed T-cell epitopes from glutamic acid decarboxylase presented in the context of HLA-DR alleles by T lymphocytes of recent onset IDDM patients. J Clin Invest 1997;99:2405–15.
  • Aparicio JM, Wakisaka A, Takada A, Matsuura N, Aizawa M. HLA-DQ system and insulin-dependent diabetes mellitus in Japa-nese: does it contribute to the development of IDDM as it does in Caucasians? Immunogenetics 1988;28:240–6.
  • Sugihara S, Sakamaki T, Konda S, Murata A, Wataki K, Kobayashi Y, et al. Association of HLA-DR, DO genotype with different beta-cell functions at IDDM diagnosis in Japanese children. Dia-betes 1997;46:1893–7.
  • Matsuura E, Igarashi Y, Yasuda T, Triplett DA, Koike T. Anticardiolipin antibodies recognize 32-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J Exp Med 1994;179: 457–62.
  • Roubey FtAS, Eisenberg RA, Harper MF, Winfield JB. "Anticardiolipin" autoantibodies recognize 32-glycoprotein I in the absence of phospholipid. Importance of Ag density and bivalent binding. J Immunol 1995;154:954–60.
  • Mehdi H, Nunn M, Steel DM, Whitehead AS, Perez M, Walker L, et al. Nucleotide sequence and expression of the human gene encoding apolipoprotein H (p2-glycoprotein I). Gene 1991;108: 293–8.
  • Nimpf J, Wurm H, Kostner GM. 32-glycoprotein-I (apo-H) inhibits the release reaction of human platelets during ADP-induced aggregation. Atherosclerosis 1987;63: 109–14.
  • Loizou S, Cazabon JK, Walport MJ, Tait D, So AK. Similarities of specificity and cofactor dependence in serum antiphospholipid antibodies from patients with human parvovirus B19 infection and from those with systemic lupus erythematosus. Arthritis Reum 1997;40: 103–8.
  • Forastiero RR, Martinuzzo ME, Cerrato GS, Kordich LC, Carreras LO. Relationship of anti-132-glycoprotein I and anti-prothrombin antibodies to thrombosis and pregnancy loss in pa-tients with antiphospholipid antibodies. Thromb Haemost 1997;78: 1008–14.
  • Arnett FC, Thiagarajan P, Ahn C, Reveille JD. Associations of anti-32-glycoprotein I autoantibodies with HLA class II alleles in three ethnic groups. Arthritis Rheum 1999;42:268–74.
  • Hashimoto H, Yamanaka K, Tokano Y, Iida N, Takasaki Y, Kobasawa K, et al. HLA-DRBI alleles and 32-glycoprotein I-dependent anticardiolipin antibodies in Japanese patients with systemic lupus erythematosus. Chin Exp Ftheumatol 1998;16:423–7.
  • Vargas-Alarcon G, Granados J, Bekker C, Alcocer-Varela J, Alarcon-Segovia D. Association of HLA-DR5 (possibly DRB1*1201) with the primary antiphospholipid syndrome in Mexican patients. Arthritis Rheum 1995;38: 1340–1.
  • Blank M, Krause I, Lanir N, Vardi P, Gilburd B, Tincani A, et al. Transfer of experimental antiphospholipid syndrome by bone mar-row cell transplantation. The importance of the T cell. Arthritis Rheum 1995;38:115–22.
  • Visvanathan S, McNeil HP. Cellular immunity to 32-glycoprotein-1 in patients with the anticardiolipin syndrome. J Immunol 1999;162:6919–25.
  • Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230:1043–5.
  • Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 1991;65:319–31.
  • Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995;80:695–705.
  • Hemmer B, Fleckenstein BT, Vergelli M, Jung G, McFarland H, Martin R, et al. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T-cell clone. J Exp Med 1997;185:1651–9.
  • Ray CG, Palmer JP, Crossley JR, Williams RH. Coxsackie B virus antibody responses in juvenile-onset diabetes mellitus. Clin Endocrinol 1980;12:375–8.
  • Hemmer B, Gran B, Zhao Y, Marques A, Pascal J, Tzou A, et al. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nature Med 1999;5:1375–82.
  • Evavold BD, Sloan-Lancaster J, Wilson KJ, Rothbard JB, Allen PM. Specific T cell recognition of minimally homologous peptides: evidence for multiple endogenous ligands. Immunity 1995;2:655–63.
  • Kersh GJ, Allen PM. Essential flexibility in the T-cell recognition of antigen. Nature 1996;380:495–8.
  • Hemmer B, Vergelli M, Pinilla C, Houghten R, Martin R. Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Immunol Today 1998;19:163–8.
  • York IA, Rock KL. Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol 1996;14:369–96.
  • Sanderson S, Frauwirth K, Shastri N. Expression of endogenous peptide-major histocompatibility complex class II complexes derived from invariant chain-antigen fusion proteins. Proc Natl Acad Sci USA 1995;92:7217–21.
  • Nakano N, Rooke R, Benoist C, Mathis D. Positive selection of T cells induced by viral delivery of neopeptides to the thymus. Science 1997;275:678–83.
  • van Bergen J, Schoenberger SP, Verreck F, Amons R, Offringa R, Koning F. Efficient loading of HLA-DR with a T helper epitope by genetic exchange of CLIP. Proc Natl Acad Sci USA 1997;94:7499–502.
  • Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 1994;12:259–93.
  • Bakke 0, Dobberstein B. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell 1990;63:707–16.
  • Pond L, Kuhn LA, Teyton L, Schutze MP, Tainer JA, Jackson MR, et al. A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J Biol Chem 1995;270:19989–97.
  • Amigorena S, Drake JR, Webster P, Mellman I. Transient accumu-lation of new class II MHC molecules in a novel endocytic com-partment in B lymphocytes. Nature 1994;369:113–20.
  • Sloan VS, Cameron P, Porter G, Gammon M, Amaya M, Mellins E, et al. Mediation by HLA-DM of dissociation of peptides from HLA-DR. Nature 1995;375:802–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.