661
Views
13
CrossRef citations to date
0
Altmetric
Technical Paper

TiO2 Nanotube-Supported Cu as the Catalyst for Selective NO Reduction with NH3

, , &
Pages 600-605 | Published online: 29 Feb 2012

References

  • Benítez, J. Process Engineering and Design for Air Pollution Control; Prentice Hall: Englewood Cliffs, NJ, 1993; Ch. 6, p 254.
  • Cho, S.M. Properly Apply Selective Catalytic Reduction for NOx Removal; Chem. Eng. Prog. 1994, 90, 39–45.
  • Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Hastings, T.W.; Stevens, F.M. Investigation of Selective Catalytic Reduction Impact on Mercury Speciation under Simulated NOx Emission Control Conditions; J. Air & Waste Manage. Assoc. 2004, 54, 1560–1566.
  • Iwamoto, M.; Zengyo, T.; Hernandez, A.M.; Araki, H. Intermediate Addition of Reductant between an Oxidation and a Reduction Catalyst for Highly Selective Reduction of NO in Excess Oxygen; Appl. Catal. B 1998, 17, 259–266.
  • Pasel, J.; Käner, P.; Montanari, B.; Gazzano, M.; Vaccari, A.; Makowski, W.; Lojewski, T.; Dziembaj, R.; Papp, H. Transition Metal Oxides Supported on Active Carbons as Low Temperature Catalysts for Selective Catalytic Reduction (SCR) of NO with NH3; Appl. Catal. B 1998, 18, 199–213.
  • Suárez, S.; Jung, S.M.; Avila, P.; Grange, P.; Blanco, J. Influence of NH3 and NO Oxidation on the SCR Reaction Mechanism on Copper/Nickel and Vanadium Oxide Catalysts Supported on Alumina and Titatia; Catal. Today 2002, 75, 331–338.
  • Bourikas, K.; Fountzoula, C.H.; Kordulis, C.H. Monolayer Transition Metal Supported on Titania Catalysts for the Selective Catalytic Reduction of NO with NH3; Appl. Catal. B 2004, 52, 145–153.
  • Pârvulescu, V.I.; Grange, P.; Delmon, B. Catalytic Removal of NO; Catal. Today 1999, 46, 233–316.
  • Komova, O.V.; Simakov, A.V.; Rogov, V.A.; Kochubei, D.I.; Odegova, G.V.; Kriventsov, V.V.; Paukshtis, E.A.; Ushakov, V.A.; Sazonova, N.N.; Nikoro, T.A. Investigation of the State of Copper in Supported Copper-Titanium Oxide Catalysts; J. Mol. Catal. A 2000, 161, 191–204.
  • Hinz, A.; Larsson, P.-O.; Skåman, B.; Andersson, A. Platinum on Alumina, Titania, and Magnesia Supports for the Combustion of Methanol in a Waste Gas with Trace Amount of Ammonia; Appl. Catal. B 2001, 34, 161–178.
  • Zanella, R.; Giorgio, S.; Henry, C.R.; Louis, C. Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2; J. Phys. Chem. B 2002, 106, 7634–7642.
  • Long, R.Q.; Yang, R.T.; Chang, R. Low Temperature Selective Catalytic Reduction (SCR) of NO with NH3 over Fe-Mn Based Catalysts. Chem. Commun. 2002, 452–453.
  • Wang, J.A.; Cuan, A.; Salmones, J.; Nava, N.; Castillo, S.; Morán-Pineda, M.; Rojas, F. Studies of Sol-Gel TiO2 and Pt/TiO2 Catalysts for NO Reduction by CO in an Oxygen-Rich Condition; Appl. Surf. Sci. 2004, 230, 94–105.
  • Dandekar, A.; Vannice, M.A. Decomposition and Reduction of N2O over Copper Catalysts; Appl. Catal. B 1999, 22, 179–200.
  • Jiang, X.Y.; Lu, G.L.; Zhou, R.X.; Mao, J.X.; Chen, Y.; Zheng, X.M. Studies of Pore Structure, Temperature-Programmed Reduction Performance, and Micro-Structure of CuO/CeO2 Catalysts; Appl. Surf. Sci. 2001, 173, 208–220.
  • Arroyo, R.; Córdoba, G.; Padilla, J.; Lara, V.H. Influence of Manganese Ions on the Anatase-Rutile Phase Transition of TiO2 Prepared by the Sol-Gel Process; Mater. Lett. 2002, 54, 397–402.
  • Qi, G.; Yang, R.T. Low-Temperature Selective Catalytic Reduction of NO with NH3 over Iron and Manganese Oxides Supported on Titania; Appl. Catal. B 2003, 44, 217–225.
  • Peña, D.A.; Uphade, B.S.; Smirniotis, P.G. TiO2-Supported Metal Oxide Catalysts for Low-Temperature Selective Catalytic Reduction of NO with NH3- i. Evaluation and Characterization of First Row Transition Metals; J. Catal. 2004, 221, 421–431.
  • Liu, C.C.; Teng, H. Cu/MCM-41 for Selective Catalytic NO Reduction with NH3-Comparison of Different Cu-Loading Methods; Appl. Catal. B 2005, 58, 69–77.
  • Chmielarz, L.; Kustrowski, P.; Zbroja, M.; Rafalska-Lasocha, A.; Dudek, B.; Dziembaj, R. SCR of NO by NH3 on Alumina or Titania-Pillared Montmorillonite Various Modified with Cu or Co: Part I. General Characterization and Catalysts Screening; Appl. Catal. B 2003, 45, 103–116.
  • Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania Nanotubes Prepared by Chemical Processing; Adv. Mater. 1999, 11, 1307–1311.
  • Du, G.H.; Chen, Q.; Che, R.C.; Yuan, Z.Y.; Peng, L.-M. Preparation and Structure Analysis of Titanium Oxide Nanotubes; Appl. Phys. Lett. 2001, 79, 3702–3704.
  • Chen, Q.; Zhou, W.; Du, G.; Peng, L.-M. Titanate Nanotubes Made via a Single Alkali Treatment; Adv. Mater. 2002, 14, 1208–1211.
  • Sun, X.; Li, Y. Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes; Chem. Eur. J. 2003, 9, 2229–2238.
  • Yang, J.; Jin, Z.; Wang, X.; Li, W.; Zhang, J.; Zhang, S.; Guo, X.; Zhang, Z. Study on Composition, Structure and Formation Process of Nano-tube Na2Ti2O4(OH)2; Dalton Trans. 2003, 3898–3901.
  • Ma, R.; Bando, Y.; Sasaki, T. Nanotubes of Lepidocrocite Titanates; Chem. Phys. Lett. 2003, 380, 577–582.
  • Zhang, M.; Jin, Z.; Zhang, X.G.; Yang, J.; Li, W.; Wang, X.; Zhang, Z. Effect of Annealing Temperature on Morphology, Structure and Photocatalytic Behavior of Nanotubed Na2Ti2O4 (OH)2; J. Mol. Catal. A 2004, 217, 203–210.
  • Tsai, C.-C.; Teng, H. Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment; Chem. Mater. 2004, 16, 4352–4358.
  • Bavykin, D.V.; Parmon, V.N.; Lapkin, A.A.; Walsh, F.C. The Effect of Hydrothermal Conditions on the Mesoporous Structure of TiO2 Nano-tubes; J. Mater. Chem. 2004, 14, 3370–3377.
  • Bavykin, D.V.; Lapkin, A.A.; Plucinski, P.K.; Friedrich, J.M.; Walsh, F.C. TiO2 Nanotube-Supported Ruthenium(iii) Hydrated Oxide: a Highly Active Catalyst for Selective Oxidation of Alcohols by Oxygen; J. Catal. 2005, 235, 10–17.
  • Tsai, C.C.; Nian, J.N.; Teng, H. Mesoporous Nanotube Aggregates Obtained from Hydrothermally Treating TiO2 with NaOH; Appl. Surf. Sci. 2006, 253, 1898–1902.
  • Tsai, C.C.; Teng, H. Structural Feature of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments; Chem. Mater. 2006, 18, 367–373.
  • Long, R.Q.; Yang, R.T. Selective Catalytic Reduction of Nitric Oxide with Ethylene on Copper Ion-Exchanged Al-MCM-41 Catalyst; Ind. Eng. Chem. Res. 1999, 38, 873–878.
  • Kieger, S.; Delahay, G.; Coq, B. Influence of CO-Cations in the Selective Catalytic Reduction of NO by NH3 over Copper Exchanged Faujasite Zeolites; Appl. Catal. B 2000, 25, 1–9.
  • Zhu, Z.; Liu, Z.; Liu, S.; Niu, H.; Hu, T.; Liu, T.; Xie, Y.N.O. Reduction with NH3 over an Activated Carbon-Supported Copper Oxide Catalyst at Low Temperatures; Appl. Catal. B 2000, 26, 25–35.
  • Curtin, T.; Regan, F.O.; Deconinck, C.; Knüttle, N.; Hodnett, B.K. The Catalytic Oxidation of Ammonia: Influence of Water and Sulfur on Selectivity to Nitrogen over Promoted Copper Oxide/Alumina Catalysts; Catal. Today. 2000, 55, 189–195.
  • Lou, J.C.; Hung, C.M.; Yang, S.F. Selective Catalytic Oxidation of Ammonia over Copper-Cerium Composite Catalyst; J. Air & Waste Manage. Assoc. 2004, 54, 68–76.
  • Zhou, R.X.; Yu, T.M.; Jiang, X.Y.; Chen, F;. Zheng, X.M. Temperature-Programmed Reduction and Temperature-Programmed Desorption Studies of Cu/ZrO2 Catalysts; Appl. Surf. Sci. 1999, 148, 263–270.
  • Zhao, L.Y.; Yang, P.C.; Wang, X.K.; Xie, Y.N.; Wu, N.Z.; Xie, Y.C; Study of Surface Copper Species of TiO2-Supported Cuo Catalyst by ReflEX AFS; Appl. Surf. Sci. 2004, 228, 257–264.
  • Chary, K.V.R., Sagar, G.V.; Naresh, D.; Seela, K.K.; Sridhar, B. Characterization and Reactivity of Copper Oxide Catalysts Supported on TiO2-ZrO2; J. Phys. Chem. B 2005, 109, 9437–9444.
  • Okamoto, Y.; Gotoh, H.; Ohto, Y.; Aritani, H.; Tanaka, T.; Yoshida, S. Zirconia-Supported Copper Catalysts for NO-CO Reactions. Surface Copper Species on Zirconia; J. Chem. Soc., Faraday Trans. 1997, 93, 3879–3885.
  • Martinez-Arias, A.; Cataluňa, R.; Conesa, J.C.; Soria, J. Effect of Copper-Ceria Interaction on Copper Reduction in a Cu/CeO2/Al2O3 Catalyst Subjected to Thermal Treatments in CO; J. Phys. Chem. B 1998, 102, 809–817.
  • Bera, P.; Priolkar, K.R.; Sarode, P.R.; Hegde, M.S.; Emura, S.; Kumashiro, R.; Lalla, N.P. Structural Investigation of Combustion Synthesized Cu/CeO2 Catalysts by EXAFS and Other Physical Techniques: Formation of a Ce1-xCuxO2-δ Solid Solution; Chem. Mater. 2002, 14, 3591–3601.
  • Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Handbook of X-Ray Photoelectron Spectroscopy; PerkinElmer: Eden Prairie, MN, 1979.
  • Córdoba, G.; Viniegra, M.; Fierro, J.L.G., Padilla, J.; Arroyo, R. TPR, ESR, and XPS Study of Cu2+ Ions in Sol-Gel-Derived TiO2; J. Solid State Chem. 1998, 138, 1–6.
  • Hernández-Huesca, R.; Santamaría, J.; Braos-García, P.; Maireles-Torres, P.; Rodríguez-Castellón, E.; Jiménez-López, A. Selective Catalytic Reduction of NO by Propane on Copper Containing Alumina Pillared α-Zirconium Phosphates; Appl. Catal. B 2001, 29, 1–11.
  • Kaneko, K.; Fukuzaki, N.; Ozeki, S. The Concentrated NO Dimer in Micropores above Room Temperature; J. Chem. Phys. 1987, 87, 776–777.
  • Teng, H.; Suuberg, E.M. Chemisorption of Nitric Oxide on Char. 1. Reversible Nitric Oxide Sorption; J. Phys. Chem. 1993, 97, 478–483.
  • Teng, H.; Hsu, L.Y.; Lai, Y.C. Catalytic Reduction of NO with NH3 over Carbons Impregnated with Cu and Fe; Environ. Sci. Technol. 2001, 35, 2369–2374.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.