1,865
Views
169
CrossRef citations to date
0
Altmetric
Technical Paper

Source Apportionment: Findings from the U.S. Supersites Program

, , , &
Pages 265-288 | Published online: 28 Feb 2012

References

  • Zannetti, P. Air Quality Modeling: Theories, Methodologies, Computational Techniques, and Available Databases and Software Vol. I Fundamentals; A&WMA: Pittsburgh, 2003.
  • Zannetti, P. Air Quality Modeling: Theories, Methodologies, Computational Techniques, and Available Databases and Software Vol. II Advanced Topics; A&WMA: Pittsburgh, 2005.
  • U.S. Environmental Protection Agency. Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze Draft 3.2; U.S. Environmental Protection Agency: Research Triangle Park, NC, 2006; available at http://www.epa.gov/ttn/scram/guidance/guide/draft_final-pm-O3-RH.pdf (accessed 2007).
  • Buzcu-Guven, B.; Brown, S.G.; Frankel, A.; Hafner, H.R.; Roberts, P.T. Analysis and Apportionment of Organic Carbon and Fine Particulate Matter Sources at Multiple Sites in the Midwestern United States; J. Air & Waste Manage. Assoc . 2007, 57, 606–619.
  • Feng, Y.C.; Shi, G.L.; Wu, J.H.; Wang, Y.Q.; Zhu, T.; Dai, S.G.; Pei, Y.Q. Source Analysis of Particulate-Phase Polycyclic Aromatic Hydro-carbons in an Urban Atmosphere of a Northern City in China; J. Air & Waste Manage. Assoc . 2007, 57, 164–171.
  • Fujita, E.M.; Zielinska, B.; Campbell, D.E.; Arnott, W.P.; Sagebiel, J.C.; Mazzoleni, L.; Chow, J.C.; Gabele, P.A.; Crews, W.; Snow, R.; Clark, N.N.; Wayne, W.S.; Lawson, D.R. Variations in Speciated Emissions from Spark-Ignition and Compression-Ignition Motor Vehicles in California’s South Coast Air Basin; J. Air & Waste Manage. Assoc . 2007, 57, 705–720.
  • Pitchford, M.L.; Schichtel, B.A.; Gebhart, K.A.; Barna, M.G.; Malm, W.C.; Tombach, I.H.; Knipping, E.M. Reconciliation and Interpretation of Big Bend National Park’s Particulate Sulfur Source Apportionment: Results from the BRAVO Study, Part II; J. Air & Waste Manage. Assoc . 2005, 55, 1726–1732.
  • Fujita, E.M.; Croes, B.E.; Bennett, C.L.; Lawson, D.R.; Lurmann, F.W.; Main, H.H. Comparison of Emission Inventory and Ambient Concentration Ratios of CO, NMOG, and NOx in California’s South Coast Air Basin; J. Air & Waste Manage. Assoc . 1992, 42, 264–276.
  • Brock, C.A.; Eatough, D.J.; Soloman, P.A. Preface to Special Section on Particulate Matter: Atmospheric Sciences, Exposure, and the Fourth Colloquium on Particulate Matter and Human Health; J. Geophys. Res. 2004, 109, D16, doi: 10.1029/2004JD005040.
  • Chow, J.C.; Watson, J.G.; Chen, L.-W.A. Contemporary Inorganic and Organic Speciated Particulate Matter Source Profiles for Geological Material, Motor Vehicles, Vegetative Burning, Industrial Boilers, and Residential Cooking; Draft Report; Desert Research Institute: Reno, NV, 2004.
  • Chow, J.C.; Solomon, P.A. Introduction: a Special Issue of the Journal of the Air & Waste Management Association on the Particulate Matter Supersites Program and Related Studies; J. Air & Waste Manage. Assoc. 2006, 56, 369.
  • Geller, M.D.; Solomon, P.A. Special Issue of Aerosol Science and Technology for Particulate Matter Supersites Program and Related Studies—Preface; Aerosol Sci. Technol. 2006, 40, 735–736.
  • Middlebrook, A.; Turner, J.; Solomon, P.A. Special Issue of Atmospheric Environment for Particulate Matter: Atmospheric Sciences, Exposure, and the Fourth Colloquium on PM and Human Health; Atmos. Environ. 2004, 38, 5179–5181.
  • Ondov, J.M.; Davidson, C.I.; Solomon, P.A. Preface: Special Issue of Aerosol Science and Technology for Particulate Matter: Atmospheric Sciences, Exposure, and the Fourth Colloquium on PM and Human Health; Aerosol Sci. Technol. 2004, 38 (Suppl. 2), 1–2.
  • Sioutas, C.; Pandis, S.N.; Allen, D.T.; Solomon, P.A. Preface: Special Issue of Atmospheric Environment on Findings from EPA’s Particulate Matter Supersites Program; Atmos. Environ. 2004, 38, 3101–3106.
  • Solomon, P.A.; Cowling, E.B.; Weber, R. Preface to the Special Section: Southern Oxidants Study 1999 Atlanta Supersite Project (SOS3); J. Geophys. Res. 2003, 108, D7, doi: 10.1029/2003/JD003536.
  • Solomon, P.A.; Allen, D. Preface: Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program; Aerosol Sci. Technol. 2004, 38 (Suppl. 1), 1–4.
  • Stanier, C.O.; Solomon, P.A. Preface to Special Section on Particulate Matter Supersites Program and Related Studies; J. Geophys. Res. 2006, 111, D10S01, doi: 10.1029/2006/JD007381.
  • Chu, S.H.; Paisie, J.W.; Jang, B.W.L. PM Data Analysis: a Comparison of Two Urban Areas: Fresno and Atlanta; Atmos. Environ. 2004, 38, 3155–3164.
  • Watson, J.G. Visibility: Science and Regulation; J. Air & Waste Manage. Assoc. 2002, 52, 628–713.
  • Hansen, D.A.; Edgerton, E.; Hartsell, B.; Jansen, J.; Burge, H.; Koutrakis, P.; Rogers, C.; Suh, H.; Chow, J.C.; Zielinska, B.; McMurry, P.; Mulholland, J.; Russell, A.; Rasmussen, R. Air Quality Measurements for the Aerosol Research and Inhalation Epidemiology Study (AIRES); J. Air & Waste Manage. Assoc. 2006, 56, 1445–1458.
  • Blifford, I.H.; Meeker, G.O. A Factor Analysis Model of Large Scale Pollution; Atmos. Environ. 1967, 1, 147–157.
  • Blanchard, C.L. Methods for Attributing Ambient Air Pollutants to Emission Sources; Annu. Rev. Energy Environ. 1999, 24, 329–365.
  • Brook, J.R.; Vega, E.; Watson, J.G. In Particulate Matter Science for Policy Makers—a NARSTO Assessment, Part 1. Hales, J.M., Hidy, G.M., Eds.; Cambridge University: London, U.K., 2004; pp 235–281.
  • Chow, J.C.; Watson, J.G. Review of PM2.5 and PM10 Apportionment for Fossil Fuel Combustion and Other Sources by the Chemical Mass Balance Receptor Model; Energy Fuels. 2002, 16, 222–260.
  • Gordon, G.E. Receptor Models; Environ. Sci. Technol. 1980, 14, 792–800.
  • Gordon, G.E. Receptor Models; Environ. Sci. Technol. 1988, 22, 1132–1142.
  • Henry, R.C.; Lewis, C.W.; Hopke, P.K.; Williamson, H.J. Review of Receptor Model Fundamentals; Atmos. Environ. 1984, 18, 1507–1515.
  • Henry, R.C. History and Fundamentals of Multivariate Air Quality Receptor Models; Chemom. Intell. Lab. Sys. 1997, 37, 37–42.
  • Henry, R.C. Multivariate Receptor Models: Current Practice and Future Trends; Chemom. Intell. Lab. Sys. 2002, 60, 43–48.
  • Hopke, P.K. Receptor Modeling in Environmental Chemistry; John Wiley & Sons: New York, 1985.
  • Hopke, P.K. Receptor Modeling for Air Quality Management; Elsevier: Amsterdam, 1991; Vol. 7.
  • Javitz, H.S.; Watson, J.G.; Guertin, J.P.; Mueller, P.K. Results of a Receptor Modeling Feasibility Study; J. Air Poll. Control Assoc. 1988, 38, 661–667.
  • Watson, J.G.; Henry, R.C.; Cooper, J.A.; Macias, E.S. In Atmospheric Aerosol: Source/Air Quality Relationships; Macias, E.S., Hopke, P.K., Eds.; American Chemical Society: Washington, DC, 1981; pp 89–106.
  • Watson, J.G. Overview of Receptor Model Principles; J. Air Poll. Control Assoc. 1984, 34, 619–623.
  • Watson, J.G.; Chow, J.C.; Fujita, E.M. Review of Volatile Organic Compound Source Apportionment by Chemical Mass Balance; Atmos. Environ. 2001, 35, 1567–1584.
  • Watson, J.G.; Zhu, T.; Chow, J.C.; Engelbrecht, J.P.; Fujita, E.M.; Wilson, W.E. Receptor Modeling Application Framework for Particle Source Apportionment; Chemosphere 2002, 49, 1093–1136.
  • Watson, J.G.; Chow, J.C. Receptor Models for Air Quality Management; EM 2004, October, 27–36.
  • Watson, J.G.; Chow, J.C. In Air Quality Modeling—Theories, Methodologies, Computational Techniques, and Available Databases and Software. Vol. II— Advanced Topics; Zannetti, P., Ed.; A&WMA and the Enviro-Comp Institute: Pittsburgh, 2005; pp 455–501.
  • Watson, J.G.; Chow, J.C. Receptor Models for Source Apportionment of Suspended Particles. In Introduction to Environmental Forensics, 2nd ed.; Murphy, B., Morrison, R., Eds.; Academic Press: New York, 2007; pp 279–316.
  • Chow, J.C.; Engelbrecht, J.P.; Watson, J.G.; Wilson, W.E.; Frank, N.H.; Zhu, T. Designing Monitoring Networks to Represent Outdoor Human Exposure; Chemosphere 2002, 49, 961–978.
  • Hidy, G.M.; Friedlander, S.K. The Nature of the Los Angeles Aerosol. In Proceedings of the Second International Clean Air Congress; Englund, H.M., Beery, W.T., Eds.; Academic: New York, 1971; pp 391–404.
  • Friedlander, S.K. The Characterization of Aerosols Distributed with Respect to Size and Chemical Composition II. Classification and Design of Aerosol Measuring Devices; Aerosol Sci. Technol. 1971, 2, 331–340.
  • Lewis, C.W.; Norris, G.A.; Conner, T.L.; Henry, R.C. Source Apportionment of Phoenix PM2.5 Aerosol with the UNMIX Receptor Model; J. Air &Waste Manage. Assoc. 2003, 53, 325–338.
  • Chen, L.-W.A.; Watson, J.G.; Chow, J.C.; Magliano, K.L. Quantifying PM2.5 Source Contributions for the San Joaquin Valley with Multivariate Receptor Models; Environ. Sci. Technol. 2007, 41, 2818–2826.
  • Zhou, L.M.; Hopke, P.K.; Paatero, P.; Ondov, J.M.; Pancras, J.P.; Pekney, N.J.; Davidson, C.I. Advanced Factor Analysis for Multiple Time Resolution Aerosol Composition Data; Atmos. Environ. 2004, 38, 4909–4920.
  • Ogulei, D.; Hopke, P.K.; Zhou, L.M.; Paatero, P.; Park, S.S.; Ondov, J.M. Receptor Modeling for Multiple Time Resolved Species: the Baltimore Supersite; Atmos. Environ. 2005, 39, 3751–3762.
  • Cabada, J.C.; Pandis, S.N.; Robinson, A.L. Sources of Atmospheric Carbonaceous Particulate Matter in Pittsburgh, Pennsylvania; J. Air & Waste Manage. Assoc. 2002, 52, 732–741.
  • Lemire, K.R.; Allen, D.T.; Klouda, G.A.; Lewis, C.W. Fine Particulate Matter Source Attribution for Southeast Texas Using 14C/13C Ratios; J. Geophys. Res. 2002, 107, ACH 3-1–ACH 3–7.
  • Dutkiewicz, V.A.; Qureshi, S.; Husain, L.; Schwab, J.J.; Demerjian, K.L. Elemental Composition of PM2.5 Aerosols in Queens, New York: Evaluation of Sources of Fine-Particle Mass; Atmos. Environ. 2006, 40 (Suppl. 2), S374–S359.
  • Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor Modeling of Ambient Particulate Matter Data Using Positive Matrix Factorization: Review of Existing Methods; J. Air & Waste Manage. Assoc. 2007, 57, 146–154.
  • McMurry, P.H.; Shepherd, M.F.; Vickery, J.S. Particulate Matter Science for Policy Makers: a NARSTO Assessment; Cambridge University: Cambridge, U.K., 2004.
  • Chow, J.C.; Watson, J.G.; Pritchett, L.C.; Pierson, W.R.; Frazier, C.A.; Purcell, R.G. The DRI Thermal/Optical Reflectance Carbon Analysis System: Description, Evaluation and Applications in U.S. Air Quality Studies; Atmos. Environ. 1993, 27, 1185–1201.
  • Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chang, M.C.O.; Robinson, N.F.; Trimble, D.; Kohl, S. The IMPROVE_A Temperature Protocol for Thermal/Optical Carbon Analysis: Maintaining Consistency with a Long-Term Database; J. Air & Waste Manage. Assoc. 2007, 57, 1014–1023.
  • Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Arnott, W.P.; Moosmüller, H.; Fung, K.K. Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols; Environ. Sci. Technol. 2004, 38, 4414–4422.
  • Chow, J.C.; Watson, J.G.; Chen, L.W.A.; Paredes-Miranda, G.; Chang, M.-C.O.; Trimble, D.; Fung, K.K.; Zhang, H.; Yu, J.Z. Refining Temperature Measures in Thermal/Optical Carbon Analysis; Atmos. Chem. Phys. 2005, 5, 2961–2972.
  • Kim, E.; Hopke, P.K. Improving Source Identification of Fine Particles in a Rural Northeastern US Area Utilizing Temperature-Resolved Carbon Fractions; J. Geophys. Res. 2004, 109, 1–13.
  • Kim, E.; Hopke, P.K.; Edgerton, E.S. Improving Source Identification of Atlanta Aerosol Using Temperature Resolved Carbon Fractions in Positive Matrix Factorization; Atmos. Environ. 2004, 38, 3349–3362.
  • Lee, D.W.; Hopke, P.K.; Rasmussen, D.H.; Wang, H.C.; Mavliev, R. Comparison of Experimental and Theoretical Heterogeneous Nucleation on Ultrafine Carbon Particles; J. Phys. Chem. B 2003, 107, 13813–13822.
  • Maykut, N.N.; Lewtas, J.; Kim, E.; Larson, T.V. Source Apportionment of PM2.5 at an Urban IMPROVE Site in Seattle, Washington; Environ. Sci. Technol. 2003, 37, 5135–5142.
  • Chow, J.C.; Yu, J.Z.; Watson, J.G.; Ho, S.S.H.; Bohannan, T.L.; Hays, M.D.; Fung, K.K. The Application of Thermal Methods for Determining Chemical Composition of Carbonaceous Aerosols: a Review; J. Environ. Sci. Health A 2007, 42, 1521–1541.
  • Watson, J.G.; Chow, J.C.; Lowenthal, D.H.; Pritchett, L.C.; Frazier, C.A.; Neuroth, G.R.; Robbins, R. Differences in the Carbon Composition of Source Profiles for Diesel- and Gasoline-Powered Vehicles; Atmos. Environ. 1994, 28, 2493–2505.
  • Fraser, M.P.; Yue, Z.W.; Buzcu, B. Source Apportionment of Fine Particulate Matter in Houston, TX, Using Organic Molecular Markers; Atmos. Environ. 2003, 37, 2117–2123.
  • Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.W.A.; Zielinska, B.; Mazzoleni, L.R.; Magliano, K.L. Evaluation of Organic Markers for Chemical Mass Balance Source Apportionment at the Fresno Super-site; Atmos. Chem. Phys. 2007, 7, 1741-1754.
  • Pekney, N.J.; Davidson, C.I.; Robinson, A.; Zhou, L.M.; Hopke, P.K.; Eatough, D.J.; Rogge, W.F. Major Source Categories for PM2.5 in Pittsburgh Using PMF and UNMIX; Aerosol Sci. Technol. 2006, 40, 910–924.
  • Zhao, W.; Hopke, P.K.; Karl, T. Source Identification of Volatile Organic Compounds in Houston, Texas; Environ. Sci. Technol. 2004, 38, 1338–1347.
  • Robinson, A.L.; Subramanian, R.; Donahue, N.M.; Bernardo-Bricker, A.; Rogge, W.F. Source Apportionment of Molecular Markers and Organic Aerosols. 1. Polycyclic Aromatic Hydrocarbons and Methodology for Data Visualization; Environ. Sci. Technol. 2006, 40, 7803–7810.
  • Robinson, A.L.; Subramanian, R.; Donahue, N.M.; Bernardo-Bricker, A.; Rogge, W.F. Source Apportionment of Molecular Markers and Organic Aerosol. 2. Biomass Smoke; Environ. Sci. Technol. 2006, 40, 7811–7819.
  • Robinson, A.L.; Subramanian, R.; Donahue, N.M.; Bernardo-Bricker, A.; Rogge, W.F. Source Apportionment of Molecular Markers and Organic Aerosol. 3. Food Cooking Emissions; Environ. Sci. Technol. 2006, 40, 7820–7827.
  • Chow, J.C. Critical Review: Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles; J. Air & Waste Manage. Assoc. 1995, 45, 320–382.
  • Kim, E.; Hopke, P.K.; Qin, Y. Estimation of Organic Carbon Blank Values and Error Structures of the Speciation Trends Network Data for Source Apportionment; J. Air & Waste Manage. Assoc. 2005, 55, 1190–1199.
  • Turpin, B.J.; Huntzicker, J.J.; Hering, S.V. Investigation of Organic Aerosol Sampling Artifacts in the Los Angeles Basin; Atmos. Environ. 1994, 28, 3061–3071.
  • Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.W.A.; Magliano, K.L. Particulate Carbon Measurements in California’s San Joaquin Valley; Chemosphere 2006, 62, 337–348.
  • Chow, J.C.; Chen, L.-W.A.; Watson, J.G.; Lowenthal, D.H.; Magliano, K.L.; Turkiewicz, K.; Lehrman, D. PM2.5 Chemical Composition and Spatiotemporal Variability during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS); J. Geophys. Res. 2006, 111, D10S04, doi: 10.1029/2005JD006457.
  • Kim, E.; Hopke, P.K. Comparison between Sample-Species Specific Uncertainties and Estimated Uncertainties for the Source Apportionment of the Speciation Trends Network Data; Atmos. Environ. 2007, 41, 567–575.
  • Eberly, S.I. EPA PMF 1.1 User’s Guide; U.S. Environmental Protection Agency: Research Triangle Park, NC, 2005.
  • Henry, R.C. UNMIX Version 2 Manual; Ronald C. Henry, Ph.D.: West Hills, CA, 2000; available at http://www.epa.gov/ttn/amtic/files/ambient/pm25/workshop/unmix2.pdf (accessed 2007).
  • Kim, E.; Hopke, P.K. Source Identifications of Airborne Fine Particles Using Positive Matrix Factorization and U.S. Environmental Protection Agency Positive Matrix Factorization; J. Air & Waste Manage. Assoc. 2007, 57, 811–819.
  • Henry, R.C. Current Factor Analysis Receptor Models Are Ill-Posed; Atmos. Environ. 1987, 21, 1815-1820.
  • Henry, R.C. Dealing with Near Collinearity in Chemical Mass Balance Receptor Models; Atmos. Environ. 1992, 26, 933–938.
  • Watson, J.G.; Robinson, N.F.; Lewis, C.W.; Coulter, C.T.; Chow, J.C.; Fujita, E.M.; Conner, T.L.; Pace, T.G. CMB8 Application and Validatio Protocol for PM2.5 and VOCs. Report No. 1808.2D1. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC, by Desert Research Institute, Reno, NV, 1998.
  • Watson, J.G.; Chow, J.C.; Lowenthal, D.H.; Robinson, N.F.; Cahill, C.F.; Blumenthal, D.L. Simulating Changes in Source Profiles from Coal-Fired Power Stations: Use in Chemical Mass Balance of PM2.5 in the Mt. Zirkel Wilderness; ; Energy Fuels. 2002, 16, 311–324.
  • Watson, J.G.; Chow, J.C.; Lurmann, F.W.; Musarra, S. Ammonium Nitrate, Nitric Acid, and Ammonia Equilibrium in Wintertime Phoenix, Arizona; J. Air & Waste Manage. Assoc. 1994, 44, 405–412.
  • Technical Support Document for the Final Clean Air Interstate Rule— Air Quality Modeling; U.S. Environmental Protection Agency; Office of Air Quality Planning & Standards: Research Triangle Park, NC, 2005.
  • Vayenas, D.V.; Takahama, S.; Davidson, C.I.; Pandis, S.N. Simulation of the Thermodynamics and Removal Processes in the Sulfate-Ammonia-Nitric Acid System during Winter: Implications for PM2.5 Control Strategies; J. Geophys. Res. 2005, 110, doi: 10.1029/2004JD005038.
  • Alpert, D.J.; Hopke, P.K. A Quantitative Determination of Sources in the Boston Urban Aerosol; Atmos. Environ. 1980, 14, 1137–1146.
  • Cadle, S.H.; Mulawa, P.A.; Hunsanger, E.C.; Nelson, K.; Ragazzi, R.A.; Barrett, R.; Gallagher, G.L.; Lawson, D.R.; Knapp, K.T.; Snow, R. Composition of Light-Duty Motor Vehicle Exhaust Particulate Matter in the Denver, Colorado Area; Environ. Sci. Technol. 1999, 33, 2328–2339.
  • Chow, J.C.; Doraiswamy, P.; Watson, J.G.; Chen, L.-W.A.; Ho, S.S.H.; Sodeman, D.A. Advances in Integrated and Continuous Measurements for Particle Mass and Chemical Composition; J. Air & Waste Manage. Assoc. 2008, 58, 141–163.
  • Solomon, P.A.; Sioutas, C. Continuous and Semicontinuous Monitoring Techniques for Particulate Matter Mass and Chemical Components: a Synthesis of Findings from EPA’s Particulate Matter Supersites Program and Related Studies; J. Air & Waste Manage. Assoc. 2008, 58, 164–195.
  • Sapkota, A.; Symons, J.M.; Kleissl, J.; Wang, L.; Parlange, M.B.; Ondov, J.M.; Breysse, P.N.; Diette, G.B.; Eggleston, P.A.; Buckley, T.J. Impact of the 2002 Canadian Forest Fires on Particulate Matter Air Quality in Baltimore City; Environ. Sci. Technol. 2005, 39, 24–32.
  • Zhou, L.M.; Kim, E.; Hopke, P.K.; Stanier, C.; Pandis, S.N. Mining Airborne Particulate Size Distribution Data by Positive Matrix Factorization; J. Geophys. Res. 2005, 110, D07S19, doi: 10.1029/2004JD004707.
  • Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric Aerosol over Alaska 2. Elemental Composition and Sources; J. Geophys. Res. 1998, 103, 19045–19057.
  • Polissar, A.V.; Hopke, P.K.; Poirot, R.L. Atmospheric Aerosol over Vermont: Chemical Composition and Sources; Environ. Sci. Technol. 2001, 35, 4604–4621.
  • Sheesley, R.J.; Schauer, J.J.; Bean, E.; Kenski, D. Trends in Secondary Organic Aerosol at a Remote Site in Michigan’s Upper Peninsula; Environ. Sci. Technol. 2004, 38, 6491–6500.
  • Kim, E.; Hopke, P.K.; Larson, T.V.; Covert, D.S. Analysis of Ambient Particle Size Distributions Using UNMIX and Positive Matrix Factorization; Environ. Sci. Technol. 2004, 38, 202–209.
  • Ogulei, D.; Hopke, P.K.; Zhou, L.M.; Pancras, J.P.; Nair, N.; Ondov, J.M. Source Apportionment of Baltimore Aerosol from Combined Size Distribution and Chemical Composition Data; Atmos. Environ. 2006, 40 (Suppl. 2), S396–S410.
  • Park, S.S.; Pancras, J.P.; Ondov, J.M.; Poor, N. A New Pseudodeterministic Multivariate Receptor Model for Individual Source Apportionment Using Highly Time-Resolved Ambient Concentration Measurements; J. Geophys. Res. 2005, 110, D07S15, 1-14, doi: 10.1029/2004JD004664.
  • Park, S.S.; Pancras, J.P.; Ondov, J.M.; Robinson, A. Application of the Pseudo-Deterministic Receptor Model to Resolve Power Plant Influences on Air Quality in Pittsburgh; Aerosol Sci. Technol. 2006, 40, 883–897.
  • Tarr, J.A. Devastation and Renewal: an Environmental History of Pittsburgh and its Region; University of Pittsburgh: Pittsburgh, 2003.
  • Pandis, S.N.; Solomon, P.A.; Scheffe, R. Preface to Special Section on Particulate Matter Supersites; J. Geophys. Res. 2005, 110, D07S01, doi: 10.1029/2005JD005983.
  • Schauer, J.J.; Cass, G.R. Source Apportionment of Wintertime Gas-Phase and Particle-Phase Air Pollutants Using Organic Compounds as Tracers; Environ. Sci. Technol. 2000, 34, 1821-1832.
  • Watson, J.G. Ph.D. Dissertation, Oregon Graduate Center, 1979.
  • Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Solomon, P.A.; Magliano, K.L.; Ziman, S.D.; Richards, L.W. PM10 Source Apportionment in California’s San Joaquin Valley; Atmos. Environ. 1992, 26, 3335–3354.
  • Gray, H.A.; Cass, G.R.; Huntzicker, J.J.; Heyerdahl, E.K.; Rau, J.A. Characteristics of Atmospheric Organic and Elemental Carbon Particle Concentrations in Los Angeles; Environ. Sci. Technol. 1986, 20, 580–589.
  • Fine, P.M.; Sioutas, C.; Solomon, P.A. Secondary Particulate Matter in the United States: Insights from the Particulate Matter Supersites Program and Related Studies; J. Air & Waste Manage. Assoc. 2008, 58, 234–253.
  • Russell, M.; Allen, D.T. Seasonal and Spatial Trends in Primary and Secondary Organic Carbon Concentrations in Southeast Texas; Atmos. Environ. 2004, 38, 3225–3239.
  • Turpin, B.J.; Huntzicker, J.J. Secondary Formation of Organic Aerosol in the Los Angeles Basin: a Descriptive Analysis of Organic and Elemental Carbon Concentrations; Atmos. Environ. 1991, 25, 207–215.
  • Lim, H.J.; Turpin, B.J. Origins of Primary and Secondary Organic Aerosol in Atlanta: Results of Time-Resolved Measurements during the Atlanta Supersite Experiment; Environ. Sci. Technol. 2002, 36, 4489–4496.
  • Chow, J.C.; Watson, J.G.; Crow, D.; Lowenthal, D.H.; Merrifield, T.M. Comparison of IMPROVE and NIOSH Carbon Measurements; Aerosol Sci. Technol. 2001, 34, 23–34.
  • Dechapanya, W.; Russell, M.; Allen, D.T. Estimates of Anthropogenic Secondary Organic Aerosol Formation in Houston, Texas; Aerosol Sci. Technol. 2004, 38 (Suppl. 1), 156–166.
  • Grosjean, D.; Seinfeld, J.H. Parameterization of the Formation Potential of Secondary Organic Aerosols; Atmos. Environ. 1989, 23, 1733-1747.
  • Grosjean, D.; Williams, E.L. II; Seinfeld, J.H. Atmospheric Oxidation of Selected Terpenes and Related Carbonyls: Gas-Phase Carbonyl Products; Environ. Sci. Technol. 1992, 26, 1526–1531.
  • Pekney, N.J.; Davidson, C.I.; Zhou, L.M.; Hopke, P.K. Application of PSCF and CPF to PMF-Modeled Sources of PM2.5 in Pittsburgh; Aerosol Sci. Technol. 2006, 40, 952–961.
  • Draxler, R.R.; Dietz, R.M.; Lagomarsino, R.J.; Start, G. Across North America Tracer Experiment (ANATEX): Sampling and Analysis; Atmos. Environ. 1991, 25, 2815–2836.
  • Draxler, R.R. The Accuracy of Trajectories during ANATEX Calculated Using Dynamic Model Analysis Versus Rawinsonde Observations; J. Appl. Meteorol. 1991, 30, 1466–1467.
  • Dutkiewicz, V.A.; Qureshi, S.; Khan, A.R.; Ferraro, V.; Schwab, J.; Demerjian, K.L.; Husain, L. Sources of Fine Particulate Sulfate in New York; Atmos. Environ. 2004, 38, 3179–3189.
  • Zhou, L.M.; Hopke, P.K.; Liu, W. Comparison of Two Trajectory Based Models for Locating Particle Sources for Two Rural New York Sites; Atmos. Environ. 2004, 38, 1955-1963.
  • Chen, L.-W.A.; Doddridge, B.G.; Dickerson, R.R.; Chow, J.C.; Henry, R.C. Origins of Fine Aerosol Mass in the Baltimore-Washington Corridor: Implications from Observation, Factor Analysis, and Ensemble Air Parcel Back Trajectories; Atmos. Environ. 2002, 36, 4541–4554.
  • Ho, S.S.H.; Yu, J.Z. Determination of Airborne Carbonyls: Comparison of a Thermal Desorption/GC Method with the Standard DNPH/HPLC Method; Environ. Sci. Technol. 2004, 38, 862–870.
  • Williams, B.J.; Goldstein, A.H.; Kreisberg, N.M.; Hering, S.V. An In Situ Instrument for Speciated Organic Composition of Atmospheric Aerosols: Thermal Desorption Aerosol GC/MS-FID (TAG); Aerosol Sci. Technol. 2006, 40, 627–638.
  • Watson, J.G.; Robinson, N.F.; Lewis, C.W.; Coulter, C.T.; Chow, J.C.; Fujita, E.M.; Lowenthal, D.H.; Conner, T.L.; Henry, R.C.; Willis, R.D. Chemical Mass Balance Receptor Model Version 8 (CMB) User’s Manual; Desert Research Institute: Reno, NV, 1997.
  • Watson, J.G.; Cooper, J.A.; Huntzicker, J.J. The Effective Variance Weighting for Least Squares Calculations Applied to the Mass Balance Receptor Model; Atmos. Environ. 1984, 18, 1347–1355.
  • Paatero, P. Least Squares Formulation of Robust Non-Negative Factor Analysis; Chemom. Intell. Lab. Sys. 1997, 37, 23–35.
  • Paatero, P.; Hopke, P.K.; Song, X.H.; Ramadan, Z. Understanding and Controlling Rotations in Factor Analytical Models; Chemom. Intell. Lab. Sys. 2002, 60, 253–264.
  • Paatero, P. The Multilinear Engine—a Table-Driven, Least Squares Program for Solving Multilinear Problems, Including the N-Way Parallel Factor Analysis Model; J. Comput. Graph. Stats. 1999, 8, 854–888.
  • Henry, R.C. Multivariate Receptor Modeling by N-Dimensional Edge Detection; Chemom. Intell. Lab. Sys. 2003, 65, 179–189.
  • Henry, R.C.; Park, E.S.; Spiegelman, C.H. Comparing a New Algorithm with the Classic Methods for Estimating the Number of Factors; Chemom. Intell. Lab. Sys. 1999, 48, 91–97.
  • Wold, S.; Sjostrom, M.; Eriksson, L. PLS-Regression: a Basic Tool of Chemometrics; Chemom. Intell. Lab. Sys. 2001, 58, 109–130.
  • Dams, R.; Rahn, K.A.; Robbins, J.A.; Nifong, G.D.; Winchester, J.W. Multi-Element Analysis of Air Pollution Particulates by Nondestructive Neutron Activation. In Proceedings of the Second International Clean Air Congress; Englund, H.M., Beery, W.T., Eds.; Academic: New York, 1971; pp 509–516.
  • Reimann, C.; de Caritat, P. Intrinsic Flaws of Element Enrichment Factors (EFs) in Environmental Geochemistry; Environ. Sci. Technol. 2000, 34, 5084–5091.
  • Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Princeton- Hall: Englewood Cliffs, NJ, 1974
  • Wang, D.; Hopke, P.K. The Use of Constrained Least-Squares to Solve the Chemical Mass Balance Problem; Atmos. Environ. 1989, 23, 2143–2150.
  • Gan, F.; Hopke, P.K. Data Mining of the Relationship between Volatile Organic Components and Transient High Ozone Formation; Anal. Chim. Acta 2003, 490, 153–158.
  • Ashbaugh, L.L. A Statistical Trajectory Technique for Determining Air Pollution Source Regions; J. Air Poll. Control Assoc. 1983, 33, 1096–1098.
  • Ashbaugh, L.L.; Myrup, L.O.; Flocchini, R.G. A Principal Component Analysis of Sulphur Concentrations in the Western United States; Atmos. Environ. 1984, 18, 783–791.
  • Henry, R.C.; Chang, Y.S.; Spiegelman, C.H. Locating Nearby Sources of Air Pollution by Nonparametric Regression of Atmospheric Concentrations on Wind Direction; Atmos. Environ. 2002, 36, 2237–2244.
  • Yu, K.N.; Cheung, Y.P.; Cheung, T.; Henry, R.C. Identifying the Impact of Large Urban Airports on Local Air Quality by Nonparametric Regression; Atmos. Environ. 2004, 38, 4501–4507.
  • Parekh, P.P.; Husain, L. Author’s Reply to Discussions: ‘Trace Element Concentrations in Summer Aerosols at Rural Sites in New York State and Their Possible Sources’; Atmos. Environ. 1982, 16, 1279–1280.
  • Draxler, R.R. Hybrid Single-Particle Lagrangian Integrated Trajectories (HY-SPLIT): Model Description; National Oceanic and Atmospheric Administration Technical Memorandum ERL ARL-166; National Oceanic and Atmospheric Administration: Silver Spring, MD, 1988.
  • Hopke, P.K.; Li, C.L.; Ciszek, W.; Landsberger, S. The Use of Bootstrapping to Estimate Conditional Probability Fields for Source Locations of Airborne Pollutants; Chemom. Intell. Lab. Sys. 1995, 30, 69–79.
  • Liu, W.; Hopke, P.K.; VanCuren, R.A. Origins of Fine Aerosol Mass in the Western United States Using Positive Matrix Factorization; J. Geophys. Res. 2003, 108 (D23), 4716, doi: 10.1029/2006JD007978.
  • Hwang, I.; Hopke, P.K. Estimation of Source Apportionment and Potential Source Locations of PM2.5 at a West Coastal IMPROVE Site; Atmos. Environ. 2007, 41, 506–518.
  • Keeler, G.J.; Samson, P.J. Spatial Representativeness of Trace Element Ratios; Environ. Sci. Technol. 1989, 23, 1358–1364.
  • Samson, P.J. Ensemble Trajectory Analysis of Summer Sulfate Concentrations in New York State; Atmos. Environ. 1978, 12, 1889-1893.
  • Samson, P.J. Trajectory Analysis of Summertime Sulfate Concentrations in the Northeastern United States; J. Appl. Meteorol. 1981, 19, 1382–1394.
  • Stohl, A. Trajectory Statistics: a New Method to Establish Source-Receptor Relationships of Air Pollutants and its Application to the Transport of Particulate Sulfate in Europe; Atmos. Environ. 1996, 30, 579–587.
  • Cheng, M.-D.; Hopke, P.K.; Zeng, Y.A Receptor-Oriented Methodology for Determining Source Regions of Particulate Sulfate at Doreset, Ontario; J. Geophys. Res. 1993, 98, 16839–16849.
  • Schauer, J.J. Analysis of Particle-Phase Organic Speciation Data to Assess Sources of PM; University of Wisconsin: Madison, WI, 2005.
  • Fraser, M.P.; Buzcu, B.; Yue, Z.W.; McGaughey, G.R.; Desai, N.R.; Allen, D.T.; Seila, R.L.; Lonneman, W.A.; Harley, R.A. Separation of Fine Particulate Matter Emitted from Gasoline and Diesel Vehicles Using Chemical Mass Balancing Techniques; Environ. Sci. Technol. 2003, 37, 3904–3909.
  • Li, Z.; Hopke, P.K.; Husain, L.; Qureshi, S.; Dutkiewicz, V.A.; Schwab, J.J.; Drewnick, F.; Demerjian, K.L. Sources of Fine Particle Composition in New York City; Atmos. Environ. 2004, 38, 6521–6529.
  • Liu, W.; Hopke, P.K.; Han, Y.J.; Yi, S.M.; Holsen, T.M.; Cybart, S.; Kozlowski, K.; Milligan, M. Application of Receptor Modeling to Atmospheric Constituents at Potsdam and Stockton, NY; Atmos. Environ. 2003, 37, 4997–5007.
  • Lee, J.H.; Hopke, P.K.; Turner, J.R. Source Identification of Airborne PM2.5 at the St. Louis-Midwest Supersite; J. Geophys. Res. 2006, 111, D10, doi: 10.1029/2005JD006329.
  • Lee, J.H.; Hopke, P.K. Apportioning Sources of PM2.5 in St. Louis, MO Using Speciation Trends Network Data; Atmos. Environ. 2006, 40 (Suppl. 2), S360–S377.
  • Liu, W.; Wang, Y.H.; Russell, A.; Edgerton, E.S. Enhanced Source Identification of Southeast Aerosols Using Temperature-Resolved Carbon Fractions and Gas Phase Components; Atmos. Environ. 2006, 40 (Suppl. 2), S445–S466.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.