219
Views
6
CrossRef citations to date
0
Altmetric
Technical Paper

Theoretical Evaluation of a Method for Locating Gaseous Emission Hot Spots

Pages 1100-1106 | Published online: 24 Jan 2012

References

  • Walmsley, H.L.; O’Connor, S.J. The Use of Differential Absorption LIDAR to Measure Atmospheric Emission Rates at Industrial Facilities. In Proceedings of the A&WMA’s International Conference on Optical Sensing for Environmental and Process Monitoring; A&WMA: Pittsburgh, PA, 1996; p 127.
  • Gronlund, R.; Sjoholm, M.; Weibring, P.; Edner, H.; Svanberg, S. Elemental Mercury Emissions from Chlor-Alkali Plants Measured by LIDAR Techniques; Atmos. Environ. 2005, 39, 7474–7480.
  • Grant, W.B.; Kagann, R.H.; McClenney, W.A. Optical Remote Measurement of Toxic Gases; J. Air & Waste Manage. Assoc. 1992, 42, 18–30.
  • Hashmonay, R.A.; Yost, M.G.; Wu, C.F. Computed Tomography of Air Pollutants Using Radial Scanning Path-Integrated Optical Remote Sensing; Atmos. Environ. 1999, 33, 267–74.
  • Wu, C.F.; Yost, M.G.; Hashmonay, R.A.; Park, D.Y. Experimental Evaluation of a Radial Beam Geometry for Mapping Air Pollutants Using Optical Remote Sensing and Computed Tomography; Atmos. Environ. 1999, 33, 4709–4716.
  • Drescher, A.C.; Park, D.Y.; Yost, M.G.; Gadgil, A.J.; Levine, S.P.; Nazaroff, W.W. Stationary and Time-Dependent Indoor Tracer-Gas Concentration Profiles Measured by OP-FTIR Remote Sensing and SBFM-Computed Tomography; Atmos. Environ. 1997, 31, 727–740.
  • Hashmonay, R.A. Real Time Mapping of Indoors Gaseous Air Contaminants Using Radial Scanned Tunable Diode Laser Absorption Spectroscopy System. In Engineering Solutions to Indoor Air Quality Problem Symposium, VIP 98; A&WMA: Pittsburgh, PA, 2000; pp 332–340.
  • Hashmonay, R.A.; Wagoner, K.; Natschke, D.F.; Harris, D.B.; Thompson, E.L. Radial Computed Tomography of Air Contaminant Using Optical Remote Sensing. In Proceedings of the A&WMA’s 95th Annual Conference, A&WMA: Pittsburgh, PA, 2002.
  • Varma, R.; Hashmonay, R.A.; Kagann, R.; Bolch, M.A. Optical Remote Sensing to Determine Strength of Nonpoint Sources: Duke Forest Validation Study; ESTCP Report No. A528044, Contract No. CP-0214, AFRL-MLTY-TR-2005-4584, November 2005; available at http://stinet.dtic.mil/(accessed 2008).
  • Modrak, M.T.; Hashmonay, R.A.; Keagan, R. Measurement of Fugitive Emissions at a Region I Landfill; EPA-600/R-04-001; U.S. Environmental Protection Agency; Office of Research and Development: Washington, DC, 2004.
  • Modrak, M.T.; Hashmonay, R.A.; Varma, R.; Kagann, R. Evaluation of a Former Landfill Site in Fort Collins, Colorado Using Ground-Based Optical Remote Sensing Technology; EPA-600/R-05/042; U.S. Environmental Protection Agency; Office of Research and Development: Washington, DC, 2005.
  • Modrak, M.T.; Hashmonay, R.A.; Varma, R.; Kagann, R. Evaluation of Fugitive Emissions at a Former Landfill Site in Colorado Springs, Colorado Using Ground-Based Optical Remote Sensing Technology; EPA-600/R-05/041; U.S. Environmental Protection Agency; Office of Research and Development: Washington, DC, 2005.
  • Modrak, M.T.; Hashmonay, R.A.; Varma, R.; Kagann, R. Measurement of Fugitive Emissions at a Landfill Practicing Leachate Recirculation and Air Injection; EPA-600/R-05/088; U.S. Environmental Protection Agency; Office of Research and Development: Washington, DC, 2005.
  • Modrak, M.T.; Hashmonay, R.A.; Varma, R.; Kagann, R. Measurement of Fugitive Emissions at a Bioreactor Landfill; EPA-600/R-05/096; U.S. Environmental Protection Agency; Office of Research and Development: Washington, DC, 2005.
  • Evaluation of Fugitive Emissions Using Ground-Based Optical Remote Sensing Technology; EPA-600/R-07/032; U.S. Environmental Protection Agency; Office of Research and Development: Washington, DC, 2007.
  • Twomey, S. Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements; Dover: Mineola, NY, 1996.
  • Chahine, M.T. Inverse Problems in Radiative Transfer: Determination of Atmospheric Parameters; J. Atmos. Sci. 1970, 17, 960–967.
  • Lawson, C.L.; Janson, R.J. Solving Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, 1995; pp 158–165.
  • Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H.T. The Quickhull Algorithm for Convex Hulls; ACM Trans. Math. Software 1996, 22, 469–483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.