210
Views
6
CrossRef citations to date
0
Altmetric
Technical Paper

Assessing Near-Field and Downwind Impacts of Reactivity-Based Substitutions

, &
Pages 316-327 | Published online: 24 Jan 2012

References

  • Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, 2006.
  • Russell, A.; Milford, J.; Bergin, M.S.; McBride, S.; McNair, L.; Yang, Y.; Stockwell, W.R.; Croes, B. Urban Ozone Control and Atmospheric Reactivity of Organic Gases; Science 1995, 269, 491–495.
  • McBride, S.J.; Oravetz, M.A.; Russell, A.G. Cost-Benefit and Uncertainty Issues in Using Organic Reactivity to Regulate Urban Ozone; Environ. Sci. Technol. 1997, 31, A238–A244.
  • Revisions to the CA State Implementation Plan and Revision to the Definition of Volatile Organic Compounds (VOC)—Removal of VOC Exemptions for CA’s Aerosol Coating Products Reactivity-Based Regulation; Fed. Regist. 2005, 70(5), 53930–53935.
  • Carter, W. Development of Ozone Reactivity Scales for Volatile Organic Compounds; J. Air & Waste Manage. Assoc. 1994, 44, 881–899.
  • Finlayson-Pitts, B.J.; Pitts, J.N. Tropospheric Air Pollution: Ozone, Airborne Toxics, Polycyclic Aromatic Hydrocarbons, and Particles; Science 1997, 276, 1045–1052.
  • Carter, W.; Atkinson, R. Computer Modeling Study of Incremental Hydrocarbon Reactivity; Environ. Sci. Technol. 1989, 23, 864–880.
  • Avery, R.J. Reactivity-Based VOC Control for Solvent Products: More Efficient Ozone Reduction Strategies; Environ. Sci. Technol. 2006, 40, 4845–4850.
  • Croes, B.E.; Holmes, J.R.; Lloyd, A.C. Reactivity-Based Hydrocarbon Controls—Scientific Issues and Potential Regulatory Applications; J. Air & Waste Manage. Assoc. 1992, 42, 657–661.
  • Dimitriades, B. Scientific Basis for the VOC Reactivity Issues Raised by Section 183(e) of the Clean Air Act Amendments of 1990; J. Air & Waste Manage. Assoc. 1996, 46, 963–970.
  • Luecken, D.; Mebust, M.R. Technical Challenges Involved in Implementation of VOC Reactivity-Based Control of Ozone; Environ. Sci. Technol. 2008, 42, 1615–1622.
  • Bergin, M.S.; Russell, A.; Milford, J.B. Quantification of Individual VOC Reactivity Using a Chemically Detailed, 3-Dimensional Photo-chemical Model; Environ. Sci. Technol. 1995, 29, 3029–3037.
  • Updated Informative Digest, Adoption of Amendments to the Regulation for Reducing Volatile Organic Compound Emissions from Aerosol Coating Products and Tables of Maximum Incremental Reactivity (MIR) Values, and Adoption of Amendments to ARB Test Method 310, “Determination of Volatile Organic Compounds in Consumer Products”; Stationary Source and Monitoring and Laboratory Divisions; California Air Resources Board: Sacramento, CA, 2000.
  • Wang, L.; Thompson, T.; McDonald-Buller, E.C.; Webb, A.; Allen, D.T. Photochemical Modeling of Emissions Trading of Highly Reactive Volatile Organic Compounds in Houston, Texas. 1. Reactivity-Based Trading and Potential for Ozone Hot Spot Formation; Environ. Sci. Technol. 2007, 41, 2095–2102.
  • U.S. Environmental Protection Agency. Approval and Promulgation of State Implementation Plans; Texas; Highly Reactive Volatile Organic Compound Emissions Cap and Trade Program for the Houston/ Galveston/Brazoria Ozone Nonattainment Area. Fed. Regist. 2006, 71(172), 54046–54051.
  • Arunachalam, S.; Mathur, R.; Holland, A.; Lee, M.R.; Olerud, D.; Jef-fries, H. Investigation of VOC Reactivity. Assessment with Comprehensive Air Quality Modeling; University of North Carolina at Chapel Hill: Chapel Hill, NC, 2003.
  • Carter, W. Calculation of Reactivity Scales Using Regional Models; Draft Report prepared for the Reactivity Research Working Group by the Air Pollution Research Center and College of Engineering; Center for Environmental Research and Technology: University of California– Riverside: Riverside, CA, 2005.
  • Carter, W.; Tonnesen, G.; Yarwood, G. Investigation of VOC Reactivity Effects Using Existing Regional Air Quality Models; Contract SC-20.0-UCRVOC-RRWG; American Chemistry Council: Washington, DC, 2003.
  • Hakami, A.; Arhami, M.; Russell, A. Further Analysis of VOC Reactivity Metrics and Scales; U.S. Environmental Protection Agency: Research Triangle Park, NC, 2004.
  • Hakami, A.; Harley, R.A.; Milford, J.B.; Odman, M.; Russell, A. Regional, Three-Dimensional Assessment of the Ozone Formation Potential of Organic Compounds; Atmos. Environ. 2004, 38, 121–134.
  • Hales, J.M. The Reactivity Research Working Group—a Chronological Overview and Evaluation; North American Research Strategy for Tropospheric Ozone: Pasco, WA, 2007; 99.
  • U.S. Environmental Protection Agency. National Ambient Air Quality Standards for Ozone; Final Rule. Fed Regist. 2008, 73(6), 16435–16514.
  • Hakami, A.; Bergin, M.S.; Russell, A. Ozone Formation Potential of Organic Compounds in the Eastern United States: a Comparison of Episodes, Inventories, and Domains; Environ. Sci. Technol. 2004, 38, 6748–6759.
  • Byun, D.; Schere, K. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; Appl. Mech. Rev. 2006, 59, 51–78.
  • Carter, W. Implementation of the SAPRC-99 Chemical Mechanism into the Models-3 Framework; U.S. Environmental Protection Agency: Washington, DC, 2000.
  • Carter, W. P. L. SAPRC Atmospheric Chemical Mechanisms and VOC Reactivity Scales; College of Engineering Center for Environmental Research and Technology; University of California–Riverside: Riverside, CA, 2000.
  • Hu, Y.; Talat Odman, M.; Russell, A. Mass Conservation in the Community Multiscale Air Quality Model; Atmos. Environ. 2006, 40, 1199–1204.
  • Cohan, D.S.; Hakami, A.; Hu, Y.; Russell, A. Nonlinear Response of Ozone to Emissions: Source Apportionment and Sensitivity Analysis; Environ. Sci. Technol. 2005, 39, 6739–6748.
  • Dunker, A.; Yarwood, G.; Ortmann, J.; Wilson, G. Comparison of Source Apportionment and Source Sensitivity of Ozone in a Three-Dimensional Air Quality Model; Environ. Sci. Technol. 2002, 36, 2953–2964.
  • Napelenok, S.; Cohan, D.; Hu, Y.; Russell, A. Decoupled Direct 3D Sensitivity Analysis for Particulate Matter (DDM-3D/PM); Atmos. Environ. 2006, 40, 6112–6121.
  • Yang, Y., Wilkinson, J.G.; Russell, A. Fast, Direct Sensitivity Analysis of Multidimensional Photochemical Models; Environ. Sci. Technol 1997, 31, 2859–2868.
  • Grell, G.; Dudhia, J.; Stauffer, D. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model: MM5; NCAR Technical Note 398[H11001]STR; National Center for Atmospheric Research: Boulder, CO, 1995.
  • Pleim, J.; Xiu, A. Development and Testing of a Surface Flux and Planetary Boundary Layer Model for Application in Mesoscale Models; J. Appl. Meteorol. 1995, 34, 16–32.
  • Xiu, A.; Pleim J. Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorological Model; J. Appl. Meteorol. 2001, 40, 192–209.
  • Carolina Environmental Program. Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) Version 2.5 User’s Manual; University of North Carolina at Chapel Hill: Chapel Hill, NC, 2007.
  • Documentation of the Revised 2002 Base Year, Revised 2018, and Initial 2009 Emission Inventories for VISTAS, Visibility Improvement State and Tribal Association of the Southeast (VISTAS); MACTEC: Alpharetta, GA, 2005.
  • SPECIATE Version 3.2; U.S. Environmental Protection Agency: Washington, DC, 2002.
  • Final Regulation Order for Reducing the Ozone Formed from Aerosol Coating Product Emissions; California Air Resources Board: Sacramento, CA, 2001.
  • The California Low-Emission Vehicle Regulations. Fed. Regist. 2007, 72(170), 50650–50652.
  • Bessagnet, B.; Rouïl, L. Ambient Ozone Simulations in Response to VOC Emission Control Scenarios; INERIS-DRC-No. 76910-LRo-No. 159; Institut National de l’Environment Industriel et des Risques: Verneuil-en-Halatte (Oise), France, 2006.
  • Zaleski, R. ExxonMobil Biomedical Sciences, Inc.: Annandale, NJ. Personal communication, 2008.
  • Carter, W. University of California–Riverside, Riverside, CA. Personal communication, 2008.
  • Wang, L.; Milford, J.B.; Carter, W. Uncertainty Analysis of Chamber-Derived Incremental Reactivity Estimates for n-Butyl Acetate and 2-Butoxyethanol; Atmos. Environ. 2002, 36, 115–135.
  • Requirements for Preparation, Adoption, and Submittal of Implementation Plans. CFR, Part 51, Title 40, 2003.
  • Carter, W.P.L. Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales; California Air Resources Board: Sacramento, CA, 2008.
  • National Ambient Air Quality Standards for Ozone; Final Rule. Fed. Regist. 2008, 73(60), 16435–16514.
  • Emery, C.; Tai, E.; Yarwood, G. Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes; Final Report for The Texas Natural Resource Conservation Commission: Austin, TX, 2001.
  • Hanna, S.; Yang, R. Evaluations of Mesoscale Models’ Simulations of Near-Surface Winds, Temperature Gradients, and Mixing Depths; J. Appl. Meteorol. 2001, 40, 1095–1104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.