28
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The CaSO4 phase in fully infiltrated electron-beam physical vapour deposited yttria stabilized zirconia top coats from engine hardware

, &
Pages 315-323 | Published online: 24 Oct 2014

REFERENCES

  • Evans, A.G., Mumm, D.R., Hutchison, J.W., Meier, G.H. and Petit, ES. (2001) Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci., 46, 505–553.
  • Kramer, S., Yang, J., Levi, C.G. and Johnson, C.A.J. (2006) Thermochemical interaction of thermal barrier coatings with molten CaO-Mg0-A1203-5i02 (CMAS) deposits. J Am. Ceram. Soc., 89 (10), 3167–75.
  • Wellman, R., Whitman, G. and Nicholls, J.R. (2010) CMAS corrosion of EB-PVD TBCs: Identifying the minium level to initiate damage. Int. J Refract. Met. Hard Mater., 28, 124–132.
  • Walsh, WS., Thole, K.A. and Joe, C. (2006) Effects of sand ingestion on the blockage of film-cooling holes. GT 2006-90067. ASME Turbo Expo 2006; Power for Land, Sea and Air, May 8-11, 2006, Barcelona, Spain, 1-10.
  • Borom, M.P., Johnson, C.A. and Peluso, L.A. (1996) Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Suff. Coat. Techn., 87-88, 116–126.
  • Mercer, C., Faulhaber, S., Evans, A.G. and Darolia, R.A. (2005) Delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infil-tration. Acta Mater., 53, 1029–1039.
  • Chen, X. (2006) Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal bar-rier coatings. Suff. Coat. Techn., 200, 3418–3427.
  • Strangman, T., Raybould, D., Jameel, A. and Baker, W. (2007) Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils. Suff. Coat. Techn., 202, 658–664.
  • Stott, F.H., de Wet, D.J. and Taylor, R. (1992) The effect of molten silicate deposits on the stability of thermal barrier coatings for turbine applications at very high temperatures. In: Froes, EH. (ed.), 3rd Int. SAMPE Metals Conf, M92—M101.
  • Witz, G., Shklover,V., Steurer, W, Bachegowda, S. and Boss-mann, H.P. (2008) High-temperature interaction of yttria stabilized zirconia coatings with CaO-Mg0-A1203-5i02 (CMAS) deposits. &if Coat. Techn., doi: 10.1016j.surf-coat.2009.07.034 (online only).
  • Smialek, J.L., Archer, EA. and Garlick, R.G. (1994) Turbine airfoil degradation in the Persian Gulf War. J Min. Metal. Mater Soc., 46 (12), 39–41.
  • Braue, W and Mechnich, P. (2011) Recession of an EB-PVD YSZ coated turbine blade by Ca504 and Fe-Ti-rich CMAS-type deposits. J Am. Ceram. Soc. (in press), doi:10.1111/ j.1551-2916.2011.04747.x.
  • Fischer, T. (2009) Lufthansa Technik AG, Hamburg, Germany, personal communication.
  • Braue, W. (2009) Environmental stability of the YSZ layer and the YSZ/TGO interface of an in-service EB-PVD coated high-pressure turbine blade. J Mater. Sci., 44, 1664–1675.
  • Kirfel, A. and Will, G. (1980) Charge density of anhydrite, CaSO4, from X-ray and neutron diffraction measurements. Acta Crystallogr., B36, 2881–2890.
  • Aquilano, D., Rubbo, M., Catti, M., Pavese, A. and Ugliengo, P. (1992) Theoretical equilibrium and growth morphology of anhydrite (CaSO4). J Cryst. Growth, 125, 519–532.
  • Sunagawa, I. (2005) Clystals-growth, morphology and perfec-tion. Cambridge University Press.
  • Miller, R.A. (1997) Thermal barrier coatings for aircraft engines: history and directions. J Therm. Spray Techn., 6, 35 — 42.
  • Du, H. (2000) Thermodynamic assessment of the K2SO4-Na2SO4-MgSO4-CaSO4 system. J Phase Equil., 21, 6–18.
  • Jakubowski, R.T., Fournelle, J., Welch, S., Swope, R.J. and Camus, P. (2002) Evidence for magmatic vapor depostion of anhydrite prior to the 1991 climatic eruption of Mount Pinatubo, Philipines. Am. Mineral., 87, 1029–1045.
  • JCPDS data basis, International Centre for Diffraction Data, Newtown Square, PA, USA.
  • Dravid, V.P., Sung, C.M., Notis, M.R. and Lyman, C.E. (1989) Crystal symmetry and coherent twin structure of calcium zirconate. Acta Crystallogr., B45, 218 —227.
  • Galuskin, E.V., Pertsev, N.N., Dzierzanowski, P., Kadiyski, M., Gurbanov, A.G., Wrzalik, R. and Winiarski, A. (2008) Lakar-giite CaZr03: A new mineral from the perovskite group from the North Caucasus, Kabarbino-Balkaria, Russia. Am. Mineral., 93, 1903 — 1910.
  • Milton, C., Ingram, B.L. and Blade, L.V. (1961) Kimzeyite, a zirconium garnet from Magnet Cove, Arkansas. Am. Mineral., 46, 533 — 548.
  • Whittle, K.R., Lumpkin, G.R., Berry, F.J., Oates, G., Smith, K.L., Yudintsev, S. and Zalusec, N.J. (2007) The structure and ordering of zirconium and hafnium containing garnets studied by electron channelling, neutron diffraction and Mossbauer spectroscopy. J Solid State Chem., 180, 785 — 791.
  • Ito, J. and Frondel, C. (1967) Synthetic zirconium and titanium garnets. Amer Mineral., 52, 773–781.
  • Mechnich, P. and Braue, W. (2010) Zr02 Environmental barrier coatings for oxide/oxide ceramic matrix composites fabricated by electron-beam physical vapor deposition. In: Singh, D., Zhu, D. and Zhu, Y. ( eds), Design, development, and applications of engineering ceramics and composites. Ceram. Trans., 215, 285–93.
  • Tolpygo, V.K. and Clarke, D.R. (2000) Surface rumpling of a (Ni, Pt)A1 bond coat induced by cyclic oxidation. Acta Mater., 48, 3283–3293.
  • Strangman, T. (2011) Prescott/AZ, USA, private communica-tion.
  • Bose, S. and DeMasi-Marcin, J. (1997) Thermal barrier coat-ing experience in gas turbine engines at Pratt & Whitney. J Thermal Spray Techn., 6, 99–104.
  • Sohn, Y.H., Lee, E.Y., Nagaraj, B.A., Briedermann, R.R. and Sisson, R.D. (2001) Microstructural characterization of ther-mal barrier coatings on high pressure turbine blades. Suff. Coat. Technol., 146-147, 132–139.
  • Wu, R., Osawa, M., Yokokawa, T., Kawagishi, K. and Harada, H. (2010) Degradation mechanisms of an advanced jet engine service-retired TBC component. J Solid. Mech. Mater. Eng., 4, 119–130.
  • Merlini, M., Gemmi, M. and Atioli, G. (2005) Thermal expansion and phase transitions in akermanite and gehlenite. Phys. Chem. Miner., 32, 189–196.
  • Jia, D. and Kriven, WA. (2007) Sintering behavior of gehle-nite, Part II. Microstructure and mechanical properties. J Am. Ceram. Soc., 90, 2766–2770.
  • Petric, A. and Ling, H. (2007) Electrical conductivity and thermal expansion of spinels at elevated temperatures. J Am. Ceram. Soc., 90, 1515–1520.
  • Porter, D.F., Reed, J.S. and Lewis, III. (1977) Elastic moduli of refractory spinels. J Am. Ceram. Soc., 60, 345–349.
  • Isaak, D.G., Anderson, O.L. and Oda, H. (1992) High-tem-perature thermal expansion and elasticity of calcium-rich garnets. Phys. Chem. Miner., 19, 106-120.
  • Thieblot, L., Roux, J. and Richet, P. (1998) High-temperature thermal expansion and decomposition of garnets. Eur. Mineral., 10, 7-15.
  • Yang, H., Ohishi, Y., Kurosaki, K., Muta, H. and Yamanaka, S. (2010) Thermomechanical properties of calcium series per-ovskite-type oxides. J Alloys Compounds, 504, 201–204.
  • Khan, A.A. (1976) Computer simulation of thermal expansion of non-cubic crystals: forsterite, anhydrite and scheelite. Acta Oystallogr., A32, 11 — 16.
  • Haecker, C.J., Garboczi, E.J., Bullard, J.W., Bohn, R.B., Sun, Z., Shah, S.P. and Voigt, T. (2005) Modeling the linear elastic properties of Portland cement paste. Cement Concrete Res., 35, 1948–1960.
  • Haynes, J.A., Pint, B.A., Porter, WD. and Wright, I.G. (2004) comparison of thermal expansion and oxidation behavior of various high-temperature coating materials and superalloys. Mater High Temp., 21, 87–94.
  • Limarga, A.M., Duong, T.L., Gregori, G. and Clarke, D.R. (2007) High-temperature vibration damping of thermal barrier coating materials. Suff. Coat. Technol., 202, 693–697.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.