243
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Influence of Feedback Modality on Sensorimotor Adaptation: Contribution of Visual, Kinesthetic, and Verbal Cues

, &
Pages 247-258 | Published online: 07 Aug 2010

References

  • Baraduc, P., & Wolpert, D. M. (2002). Adaptation to a visuomotor shift depends on the starting posture. Journal of Neurophysiology, 88, 973-981.
  • Bard, C., Fleury, M., Teasdale, N., Paillard, J., & Nougier, V. (1995). Contribution of proprioception for calibrating and updating the motor space. Canadian Journal of Physiology & Pharmacology, 73, 246-254.
  • Bernier, P. M., Chua, R., Bard, C., & Franks, I. M (2006). Updating of an internal model without proprioception: A deafferentation study. NeuroReport, 17, 1421-1425.
  • Bernier, P. M., Chua, R., & Franks, I. M. (2005). Is proprioception calibrated during visually guided movements? Experimental Brain Research, 167, 292-296.
  • Blouin, J., Gauthier, G. M., Vercher, J.-L., & Cole, J. (1996). The relative contribution of retinal and extraretinal signals in determining the accuracy of reaching movements in normal subjects and a deafferented patient. Experimental Brain Research, 109, 148-153.
  • Bock, O., & Girgenrath, M. (2006). Relationship between sensorimotor adaptation and cognitive functions in younger and older subjects. Experimental Brain Research, 169, 400-406.
  • Bourdin, C., Gauthier, G. M., Blouin, J., & Vercher, J.-L. (2001). Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces. Neuroscience Letters, 301, 25-28.
  • Boy, F., Palluel-Germain, R., Orliaguet, J. P., & Coello, Y. (2005). Dissociation between "where" and "how" judgements of one's own motor performance in a video-controlled reaching task. Neuroscience Letters, 386, 52-57.
  • Buekers, M. J., & Magill, R.A. (1995). The role of task experience and prior knowledge for detecting invalid augmented feedback while learning a motor skill. Quarterly Journal of Experimental Psychology, 48A, 84-97.
  • Clower, D. M., & Boussaoud, D. (2000). Selective use of perceptual recalibration versus visuomotor skill acquisition. Journal of Neurophysiology, 84, 2703-2708.
  • Coello, Y., Orliaguet, J. P., & Prablanc, C. (1996). Pointing movement in an artificial perturbing inertial field: A prospective paradigm for motor control study. Neuropsychologia, 34, 879-892.
  • Eversheim, U., & Bock O. (2001). Evidence for processing stages in skill acquisition: A dual-task study. Learning & Memory, 8, 183-189.
  • Flanagan, J. R., & Rao, A. K. (1995). Trajectory adaptation to a nonlinear visuomotor transformation: Evidence of motion planning in visually perceived space. Journal of Neurophysiology, 74, 2174-2178.
  • Ghez, C., Krakauer, J., Sainburg, R. L., & Ghilardi, M. F. (1999). Spatial representations and internal models of limb dynamics in motor learning. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (2nd ed., pp. 501-514). Cambridge, MA: The MIT Press.
  • Guillaud, E., Gauthier, G. M., Vercher, J.-L., & Blouin, J. (2006). Visuoocular and vestibular signal fusion in arm motor control. Journal of Neurophysiology, 95, 1134-1146.
  • Hardt, M. E., Held, R., & Steinbach, M. J. (1971). Adaptation to displaced vision: A change in the central control of sensorimotor coordination. Journal of Experimental Psychology, 89, 229-239.
  • Harris, C. S. (1963). Adaptation to displaced vision: Visual, motor or proprioceptive change? Science, 140, 812-813.
  • Hay, J. C., & Pick, H. L. (1966). Visual and proprioceptive adaptation to optical displacement of the visual stimulus. Journal of Experimental Psychology, 92, 319-325.
  • Held, R., & Gottlieb, N. (1958). Technique for studying adaptation to disarranged hand-eye coordination. Perceptual & Motor Skills, 8, 83-86.
  • Helmholtz, H. von (1962). Treatise on physiological optics (Vol. 3 [J. P. C. Southhall, Trans.]). New York: Dover. (Original work published 1867)
  • Ingram, H. A., Van Donkelaar, P., Cole, J., Vercher, J. L., Gauthier, G. M., & Miall, R.C. (2000). The role of proprioception and attention in a visuomotor adaptation task. Experimental Brain Research, 132, 114-126.
  • Jakobson, L. S., & Goodale, M. A. (1989). Trajectories of reaches to prismatically-displaced targets: Evidence for ‘automatic’ visuomotor recalibration. Experimental Brain Research, 78, 575-587.
  • Kagerer, F. A., Contreras-Vidal, J. L., & Stelmach, G. E. (1997). Adaptation to gradual as compared with sudden visuomotor distortions. Experimental Brain Research, 115, 557-561.
  • Kornheiser, A. S. (1976). Adaptation to laterally displaced vision: A review. Psychology Bulletin, 83, 783-816.
  • Lackner, J. R. (1974). Adaptation to displaced vision: Role of proprioception. Perceptual and Motor Skills, 38, 1251-1256.
  • Lloyd, D. M., Shore, D. I., Spence, C., & Calvert, G. A. (2003). Multisensory representation of limb position in human premotor cortex. Nature Neuroscience, 6, 17-18.
  • Malfait, N., & Ostry, D. J. (2004). Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? Journal of Neuroscience, 24, 8084-8089.
  • Mather, J. A., & Lackner, J. R. (1981). The influence of efferent, proprioceptive, and timing factors on the accuracy of eye-hand tracking. Experimental Brain Research, 43(3-4), 406-412.
  • Novak, K. E., Miller, L. E., & Houk J. C. (2003). Features of motor performance that drive adaptation in rapid hand movements. Experimental Brain Research, 148, 388-400.
  • Prablanc, C., Echallier, J. F., Komilis, E., & Jeannerod, M. (1979). Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biological Cybernetics, 35, 113-124.
  • Proteau, L. (2005). Visual afferent information dominates other sources of afferent information during mixed practice of a videoaiming task. Experimental Brain Research, 161, 441-456.
  • Redding, G. M., Clark, S. E., & Wallace, B. (1985). Attention and prism adaptation. Cognition & Psychology, 17, 1-25.
  • Redding, G. M., Rossetti, Y., & Wallace, B. (2005). Applications of prism adaptation: A tutorial in theory and method. Neuroscience & Biobehavioral Review, 29, 431-444.
  • Redding, G. M., & Wallace, B. (1985). Cognitive interference in prism adaptation. Perception & Psychophysics, 37, 225-230.
  • Redding, G. M., & Wallace, B. (1992). Effects of pointing rate and availability of visual feedback on visual and proprioceptive components of prism adaptation. Journal of Motor Behavior, 24, 226-237.
  • Robertson, E. M., & Miall, R. C. (1999). Visuomotor adaptation during inactivation of the dentate nucleus. NeuroReport, 10, 1029-1034.
  • Robin, C., Toussaint, L., Blandin, Y., & Vinter, A. (2004). Sensory integration in the learning of aiming toward "self-defined" targets. Research Quarterly for Exercise and Sport, 75, 381-387.
  • Roby-Brami, A., & Burnod, Y. (1995) Learning a new visuomotor transformation: Error correction and generalization. Cognitive Brain Research, 2, 229-242.
  • Rossetti, Y., Desmurget, M., & Prablanc, C. (1995) Vectorial coding of movement: Vision, proprioception, or both? Journal of Neurophysiology, 74, 457-463.
  • Sarlegna, F., Blouin, J., Bresciani, J.-P., Bourdin, C., Vercher, J.-L., & Gauthier, G. M. (2004). Online control of the direction of rapid reaching movements. Experimental Brain Research, 157, 468-471.
  • Sarlegna, F., & Sainburg, R. L. (2007) The effect of target modality on visual and proprioceptive contributions to the control of movement distance. Experimental Brain Research, 176, 267-280.
  • Scheidt, R. A., Conditt, M. A., Secco, E. L., & Mussa-Ivaldi, F. A. (2005). Interaction of visual and proprioceptive feedback during adaptation of human reaching movements. Journal of Neurophysiology, 93, 3200-3213.
  • Schmidt, R. A., & Lee, T. D. (1999). Motor control and learning: A behavioral emphasis. Champaign, IL: Human Kinetics.
  • Taub, E., & Goldberg, I. A. (1974). Use of sensory recombination and somatosensory deafferentation techniques in the investigation of sensory-motor integration. Perception, 3, 393-405.
  • Uhlarik, J. J. (1973). Role of cognitive factors on adaptation to prismatic displacement. Journal of Experimental Psychology, 98, 223-232.
  • Wang, J., & Sainburg, R. L. (2005). Adaptation to visuomotor rotations remaps movement vectors, not final positions. Journal of Neuroscience, 25, 4024-4030.
  • Webster, R. G. (1969). The relationship between cognitive, motorkinesthetic, and oculomotor adaptation. Perception & Psychophysics, 6, 33-38.
  • Welch, R. B. (1974). Research on adaptation to rearranged vision: 1966-1974. Perception, 3, 367-392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.