88
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Adaptation to a Nonlinear Visuomotor Amplitude Transformation With Continuous and Terminal Visual Feedback

&
Pages 368-379 | Published online: 07 Aug 2010

References

  • Angel, R. W., Garland, H., & Fischler, M. (1971). Training errors amended without visual feedback. Journal of Experimental Psychology, 89, 422-424.
  • Arnold, P., Farrell, M. J., Pettifar, S., & West, A. J. (2002). Performance of a skilled motor task in virtual and real environments. Ergonomics, 45, 348-361.
  • Baily, J. S. (1972). Adaptation to prisms: Do proprioceptive changes mediate adapted behavior without ballistic arm movements? Quarterly Journal of Experimental Psychology, 24, 8-20.
  • Bedford, F. L. (1989). Constraints on learning new mappings between perceptual dimensions. Journal of Experimental Psychology: Human Perception and Performance, 15, 232-248.
  • Bedford, F. L. (1995). Constraints on perceptual learning: Objects and dimensions. Cognition, 54, 253-297.
  • Bernier, P. M., Chua, R., & Franks, I. M. (2005). Is proprioception calibrated during visually guided movements? Experimental Brain Research, 167, 292-296.
  • Bock, O. (1992). Adaptation of aimed arm movements to sensorymotor discordance: Evidence for direction-independent gain control. Behavioral Brain Research, 51, 41-50.
  • Bock, O., & Burghoff, M. (1997). Visuomotor adaptation: Evidence for a distributed amplitude control system. Behavioral Brain Research, 89, 267-273.
  • Cohen, M. M. (1967). Continuous versus terminal visual feedback in prism aftereffects. Perceptual and Motor Skills, 24, 1295-1302.
  • Cordo, P. J. (1990). Kinesthetic control of a multijoint movement sequence. Journal of Neurophysiology, 63, 161-172.
  • Cunningham, H. A., & Welch, R. B. (1994). Multiple concurrent visual-motor mappings: Implications for models of adaptation. Journal of Experimental Psychology: Human Perception and Performance, 20, 987-999.
  • Dolezal, H. (1982). Living in a world transformed. Perceptual and performatory adaptation to visual distortion. New York: Academic Press.
  • Flanagan, J. R., & Rao, A. (1995). Trajectory adaptation to a nonlinear visuomotor transformation: Evidence of motion planning in visually perceived space. Journal of Neurophysiology, 74, 2174-2178.
  • Frensch, P. A., Haider, H., Rünger, D., Neugebauer, U., Voigt, S., & Werg, J. (2002). Verbal report of incidentally experienced environmental regularity: The route from implicit learning to verbal expression of what has been learned. In L. Jiménez Ed.), Attention and implicit learning (pp. 335-366). New York: Benjamins.
  • Gentaz, E., & Hatwell, Y. (2006). Geometrical haptic illusions: The role of exploration in the Müller-Lyer, vertical-horizontal, and Delboeuf illusions. Psychonomic Bulletin & Review, 11, 31-40.
  • Goodbody, S. J., & Wolpert, D. M. (1999). The effect of visuomotor displacements on arm movement paths. Experimental Brain Research, 127, 213-223.
  • Haider, H., & Frensch, P. A. (2005). The generation of conscious awareness in an incidental learning situation. Psychological Research, 69, 399-411.
  • Held R., & Hein A. (1958). Adaptation to disarranged hand-eye coordination contingent upon reafferent stimulation. Perceptual and Motor Skills, 8, 87-90.
  • Heuer, H. (1983). Bewegungslernen. Stuttgart, Germany: Kohlhammer.
  • Heuer, H. (2003). Motor control. In A. F. Healy & R. W. Proctor (Eds.), Handbook of psychology: Vol. 4. Experimental psychology (pp. 317-354). New York: Wiley.
  • Heuer, H., & Hegele, M. (2007). Learning new visuomotor gains at early and late working age. Ergonomics, 50, 979-1003.
  • Jordan, M. I. (1996). Computational aspects of motor control and motor learning. In H. Heuer & S. W. Keele (Eds.), Handbook of perception and action: Vol. 2. Motor skills (pp. 71-120). London: Academic Press.
  • Kitazawa, S., Kimura T., & Uka, T. (1997). Prism adaptation of reaching movements: Specificity for the velocity of reaching. Journal of Neuroscience, 17, 1481-1492.
  • Koh, K., & Meyer, D. E. (1991). Function learning: Induction of continuous stimulus-response relations. Journal of Experimental Psychology: Learning, Memory and Cognition, 17, 811-836.
  • Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20, 8916-8924.
  • Proteau, L., & Carnahan, H. (2001). What causes specificity of practice in a manual aiming movement: Vision dominance or transformation errors? Journal of Motor Behavior, 33, 226-234.
  • Proteau, L., & Isabelle, G. (2002). On the role of visual afferent information for the control of aiming movements toward targets of different sizes. Journal of Motor Behavior, 34, 367-384.
  • Proteau, L., Marteniuk, R. G., Girouard, Y., & Dugas, C. (1987). On the type of information used to control and learn an aiming movement after moderate and extensive training. Human Movement Science, 6, 181-199.
  • Reid, R. L. (1954). An illusion of movement complementary to horizontal-vertical illusion. Quarterly Journal of Experimental Psychology, 6, 107-111.
  • Sangals, J. (1997). Der Einfluß der Bewegungsrückmeldung auf das Erlernen nichtlinearer Werkzeugtransformationen [The effect of movement feedback on the acquisition of nonlinear tool transformations]. Unpublished doctoral dissertation, Philipps-Universität Marburg, Germany.
  • Smeets, J. B. J., van den Dobbelsteen, J. J., de Grave, D. D. J., van Beers, M. J., & Brenner, E. (2006). Sensory integration does not lead to sensory calibration. Proceedings of the National Academy of Sciences, 103, 18781-18786.
  • Smith, K. U. (1966). Cybernetic theory and analysis of learning. In E. A. Bilodeau (Ed.), Acquisition of skill (pp. 425-482). New York: Academic Press.
  • Tendick, F., Jennings, R. W., Tharp, G., & Stark, L. (1993). Sensing and manipulation problems in endoscopic surgery: Experiment, analysis, and observation. Presence, 2, 66-81.
  • Verwey, W. B., & Heuer, H. (2007). Nonlinear visuomotor transformations: Locus and modularity. Quarterly Journal of Experimental Psychology, 60, 1629-1659.
  • Welch, R. B. (1972). The effect of experienced limb identity upon adaptation to simulated displacement of the visual field. Perception & Psychophysics, 12, 453-456.
  • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Experimental Brain Research, 103, 460-470.
  • Wong, T. S. (1977). Dynamic properties of radial and tangential movements as determinants of the haptic horizontal-vertical illusion with a L-figure. Journal of Experimental Psychology: Human Perception and Performance, 3, 151-164.
  • Buch, E. R., Young, S., & Contreras-Vidal, J. L. (2003). Visuomotor adaptation in normal aging. Learning and Memory, 10, 55-63.
  • Clower, D. M., & Boussaoud, D. (2000). Selective use of perceptual recalibration versus visuomotor skill acquisition. Journal of Neurophysiology, 84, 2703-2708.
  • Davidson, P. R., Jones, R. D., Sirisena, H. R., & Andreae, J. H. (2000). Detection of adaptive inverse models in the human motor system. Human Movement Science, 19, 761-795.
  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4, 423-431.
  • Kottenhoff, H. (1957). Situational and personal influences on space perception with experimental spectacles: Part I. Prolonged experiments with inverting glasses. Acta Psychologica, 13, 79-97.
  • Krakauer, J. W., Ghilardi, M. F., Mentis, M., Barnes, A., Veytsman, M., Eidelberg D., et al. (2004). Differential cortical and subcortical activations in learning rotations and gains for reaching: A PET study. Journal of Neurophysiology, 91, 924-933.
  • Sarlegna, F., Blouin, J., Vercher, J.-L., Bresciani, J.-P., Bourdin, C., & Gauthier, G. M. (2004). Online control of the direction of rapid reaching movements. Experimental Brain Research, 157, 468-471.
  • Shadmehr, R. (2004). Generalization as a behavioral window to the neural mechanisms of learning internal models. Human Movement Science, 23, 543-568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.