388
Views
121
CrossRef citations to date
0
Altmetric
Original Article

Multifinger Prehension: An Overview

&
Pages 446-476 | Published online: 07 Aug 2010

References

  • Aoki, T., Niu, X., Latash, M. L., & Zatsiorsky, V. M. (2006). Effects of friction at the digit-object interface on the digit forces in multi-finger prehension. Experimental Brain Research, 172, 425-438.
  • Aoki, T., Latash, M. L., & Zatsiorsky, V. M. (2007). Adjustments to different local friction in multi-finger prehension. Journal of Motor Behavior, 39, 276-290
  • Arbib, M. A., Iberall, T., & Lyons, D. (1985). Coordinated control programs for movements of the hand. In A. W. Goodwin and I. Darian-Smith (Eds.), Hand function and the neocortex (pp. 111-129). Berlin, Germany: Springer Verlag.
  • Arimoto, S., Tahara, K., Yamaguchi, M., Nguyen, P. T. A., & Han, H. Y. (2001). Principles of superposition for controlling pinch motions by means of robot fingers with soft tips. Robotica, 19, 21-28.
  • Augurelle, A. S., Penta, M., White, O., & Thonnard, J. L. (2003). The effects of a change in gravity on the dynamics of prehension. Experimental Brain Research, 148, 533-540.
  • Augurelle, A. S., Smith, A. M., Lejeune, T., & Thonnard, J. L. (2003). Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. Journal of Neurophysiolog, 89, 665-671.
  • Babin-Ratté, S., Sirigu, A., Gilles, M., & Wing, A. (1999). Impaired anticipatory finger grip-force adjustments in a case of cerebellar degeneration. Experimental Brain Research, 128, 81-85.
  • Baud-Bovy, G., & Soechting, J. F. (2001). Two virtual fingers in the control of the tripod grasp. Journal of Neurophysiology, 86, 604-615.
  • Bennett, K. M. B., & Castiello, U. (Eds.). (1994). Insights into the reach to grasp movement. Amsterdam, The Netherlands: Elsevier Science.
  • Bernstein, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon Press.
  • Birznieks, I., Burstedt, M. K., Edin, B. B., & Johansson, R. S. (1998). Mechanisms for force adjustments to unpredictable frictional changes at individual digits during two-fingered manipulation. Journal of Neurophysiology, 80, 1989-2002.
  • Blank, R., Breitenbach, A., Nitschke, M., Heizer, W., Letzgus, S., & Hermsdörfer, J. (2001). Human development of grasp force modulation relating to cyclic movement-induced inertial loads. Experimental Brain Research, 138, 193-199.
  • Buchanan, T. S., Almdale, D. P., Lewis, J. L., & Rymer, W. Z. (1986). Characteristics of synergic relations during isometric contractions of human elbow muscles. Journal of Neurophysiology, 56, 1225-1241.
  • Buchanan, T. S., Rovai, G. P., & Rymer, W. Z. (1989). Strategies for muscle activation during isometric torque generation at the human elbow. Journal of Neurophysiology, 62, 1201-1212.
  • Budgeon, M. K. (2007). Prehension synergies during finger manipulation. Unpublished Master's Thesis. The Pennsylvania State University, University Park, PA.
  • Burstedt, M. K., Edin, B. B., & Johansson, R. S. (1997). Coordination of fingertip forces during human manipulation can emerge from independent neural networks controlling each engaged digit. Experimental Brain Research, 117, 67-79.
  • Burstedt, M. K., Flanagan, J. R., & Johansson, R. S. (1999a). Control of grasp stability in humans under different frictional conditions during multidigit manipulation. Journal of Neurophysiology, 82, 2393-2405.
  • Burstedt, M., Flanagan, J., & Johansson, R. (1999b). Control of grasp stability in humans under various frictional conditions during multi-digit lifting. Acta Physiologica Scandinavica, 167(2), A22-A23.
  • Buss, M., Hashimoto, H., & Moore, J. B. (1996). Dextrous hand grasping force optimization. IEEE Transactions on Robotics and Automation, 12, 406-418.
  • Buss, M., Faybusovich, L., & Moore, J. B. (1998). Dikin-type algorithms for dextrous grasping force optimization. International Journal of Robotic Research, 17, 831-839.
  • Cadoret, G., & Smith, A. M. (1996). Friction, not texture, dictates grasp forces used during object manipulation. Journal of Neurophysiology, 75, 1963-1969.
  • Castiello, U. (2005). The neuroscience of grasping. Nature reviews. Neuroscience, 6, 720-736.
  • Cesari, P., & Newell, K. M. (1999). The scaling of human grip configurations. Journal of Experimental Psychology: Human Perception and Performance, 25, 927-935.
  • Cesari, P., & Newell, K. M. (2000). Body-scaled transitions in human grip configurations. Journal of Experimental Psychology: Human Perception and Performance, 26, 1657-1668.
  • Cesari, P., & Newell, K. M. (2002). Scaling the components of prehension. Motor Control, 6, 347-365.
  • Chang, C. C., Brown, D. R., Bloswick, D. S., & Hsiang, S. M. (2001). Biomechanical simulation of manual lifting using spacetime optimization. Journal of Biomechanics, 34, 527-532.
  • Cole, K. J., & Abbs, J. H. (1987). Kinematic and electromyographic responses to perturbation of a rapid grasp. Journal of Neurophysiology, 57, 1498-1510.
  • Cole, K. J., & Abbs, J. H. (1988). Grasp force adjustments evoked by load force perturbations of a grasped object. Journal of Neurophysiology, 60, 1513-1522.
  • Cole, K. J., & Johansson, R. S. (1993). Friction at the digitobject interface scales the sensorimotor transformation for grip responses to pulling loads. Experimental Brain Research, 95, 523-532.
  • Cole, K. J., & Rotella, D. L. (2002). Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during grasp. Experimental Brain Research, 143, 35-41.
  • Cutkosky, M. R., & Howe, R. D. (1990). Human grasp choice and robotic grasp analysis. T. Venkataraman & T. Iberall, T. Eds., Dextrous robot hands (pp. 5-31). New York: Springer Verlag.
  • Danion, F., Schöner, G., Latash, M. L., Li, S., Scholz, J. P., & Zatsiorsky, V. M. (2003). A force mode hypothesis for finger interaction during multi-finger force production tasks. Biological Cybernetics, 88, 91-98.
  • Dornay, M., Uno, Y., Kawato, M., & Suzuki, R. (1996). Minimum muscle-tension change trajectories predicted by using a 17-muscle model of the monkey's arm. Journal of Motor Behavior, 28, 83-100.
  • Dysart, M. J., & Woldstad, J. C. (1996). Posture prediction for static sagittal-plane lifting. Journal of Biomechanics, 29, 1393-1397.
  • Edin, B. B., & Johansson, N. (1995). Skin strain patterns provide kinaesthetic information to the human central nervous system. Journal of Physiology, 487, 243-251.
  • Edin, B. B., Westling, G., & Johansson, R. S. (1992). Independent control of human finger-tip forces at individual digits during precision lifting. Journal of Physiology, 450, 547-564.
  • Einstein, A. (1907). On the relativity principle and the conclusions drawn from it. Yearbook of radiactivity and electronics (in German). Cited in A. Einstein & L. Infeld. The evolution of physics: from early concepts to relativity and quanta. New York: Simon and Schuster; 1938.
  • Eliasson, A. C., Forssberg, H., Ikuta, K., Apel, I., Westling, G., & Johansson, R. (1995). Development of human precision grip. V. Anticipatory and triggered grip actions during sudden loading. Experimental Brain Research, 106, 425-433.
  • Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson's disease. Brain, 121, 1771-1784.
  • Fellows, S. J., Ernst, J., Schwarz, M., Topper, R., & Noth, J. (2001). Precision grip deficits in cerebellar disorders in man. Clinical Neurophysiology, 112, 1793-1802.
  • Fellows, S. J., & Noth, J. (2004). Grasp force abnormalities in de novo Parkinson's disease. Movement Disorders, 19, 560-565.
  • Flanagan, J. R., & Johansson, R. S. (2002). Hand movements. In V. S. Ramshandran (Ed.), Encyclopaedia of the human brain (pp. 399-414). San Diego, CA: Academic Press.
  • Flanagan, J. R., & Tresilian, J. R. (1994). Grip-load force coupling: a general control strategy for transporting objects. Journal of Experimental Psychology: Human Perception and Performance, 20, 944-957.
  • Flanagan, J. R., & Wing, A. M. (1993). Modulation of grasp force with load force during point-to-point arm movements. Experimental Brain Research, 95, 131-143.
  • Flanagan, J. R., & Wing, A. M. (1995). The stability of precision grasp forces during cyclic arm movements with a hand-held load. Experimental Brain Research, 105, 455-464.
  • Flanders, M., & Soechting, J. F. (1990). Arm muscle activation for static forces in three-dimensional space. Journal of Neurophysiology, 64, 1818-1837.
  • Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience, 5, 1688-1703.
  • Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., & Westling, G. (1991). Development of human precision grip. I. Basic coordination of force. Experimental Brain Research, 85, 451-457.
  • Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G., & Johansson, R. S. (1995). Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Experimental Brain Research, 104, 323-330.
  • Friedman, J., & Flash, T. (2007). Task-dependent selection of grasp kinematics and stiffness in human object manipulation. Cortex, 43, 444-460.
  • Gao, F., Latash, M. L., & Zatsiorsky, V. M. (2004). Neural network modeling supports a theory on the hierarchical control of prehension. Neural Computing and Applications, 13, 352-359.
  • Gao, F., Latash, M. L., & Zatsiorsky, V. M. (2005a). Control of finger force direction in the flexion-extension plane. Experimental Brain Research, 161, 307-315.
  • Gao, F., Latash, M. L., & Zatsiorsky, V. M. (2005b). Internal forces during object manipulation. Experimental Brain Research, 165, 69-83.
  • Gao, F., Latash, M. L., & Zatsiorsky, V. M. (2005c). In contrast to robots, in humans internal and manipulation forces are coupled (ThP01-18). Proceedings of 2005 9th IEEE International Conference on Rehabilitation Robotics (pp. 404-407). Chicago, IL.
  • Gao, F., Latash, M. L., & Zatsiorsky, V. M. (2006). Maintaining rotational equilibrium during object manipulation: linear behavior of a highly non-linear system. Experimental Brain Research, 169, 519-531.
  • Gao, F., Li, S., Li, Z. M., Latash, M. L., & Zatsiorsky, V. M. (2003). Matrix analyses of interaction among fingers in static force production tasks. Biological Cybernetics, 89, 407-414.
  • Goodwin, A. W., Jenmalm, P., & Johansson, R. S. (1998). Control of grip force when tilting objects: effect of curvature of grasped surfaces and applied tangential torque. Journal of Neuroscience, 18, 10724-10734.
  • Gordon, A. M. (2001). Development of hand motor control. In A. F. Kalverboer & A. Gramsbergen (Eds.), Handbook of brain and behaviour in human development (pp. 513-537). Dordrecht, The Netherlands: Kluwer Academic Press.
  • Gordon, A. M. & Duff, S. V. (1999). Fingertip forces during object manipulation in children with hemiplegic cerebral palsy: Part I. Anticipatory scaling. Developmental Medicine and Child Neurology, 41, 166-175.
  • Gysin, P., Kaminski, T. R., & Gordon, A. M. (2003). Coordination of fingertip forces in object transport during locomotion. Experimental Brain Research, 149, 371-379.
  • Hermsdörfer, J., Marquardt, C., Philipp, J., Zierdt, A., Nowak, D., Glasauer, S., et al. (1999). Grasp forces exerted against stationary held objects during gravity changes. Experimental Brain Research, 126, 205-214.
  • Hermsdörfer, J., Ulrich, S., Marquardt, C., Goldenberg, G., & Mai, N. (1999). Prehension with the ipsilesional hand after unilateral brain damage. Cortex, 35, 139-161.
  • Hershkovitz, M., Tasch, U., & Teboulle, M. (1995). Toward a formulation of the human grasping quality sense. Journal of Robotic Systems, 19, 249-256.
  • Hershkovitz, M., Tasch, U., Teboulle, M., & Tzelgov, J. (1997). Experimental validation of an optimization formulation of the human grasping quality sense. Journal of Robotic Systems, 14, 753-766.
  • Hershkovitz, M., & Teboulle, M. (1998). Sensitivity analysis for a class of robotic grasping quality functionals. Robotica, 16, 227-235.
  • Huijing, P. A. (1998). Muscle, the motor of movement: Properties in function, experiment and modelling. Journal of Electromyography & Kinesiology, 8, 61-77.
  • Huijing, P. A. (1999). Muscle as a collagen fiber reinforced composite: A review of force transmission in muscle and whole limb. Journal of Biomechanics, 32, 329-345.
  • Iberall, T. (1987). The nature of human prehension: Three dexterous hands in one. Proceedings of 1987 IEEE International Conference on Robotics and Automation, 396-401.
  • Johansson, R. S. (1996). Sensory control of dextrous manipulation in humans. In A. Wing, P. Haggard, & R. Flanagan (Eds.), Hand and brain (pp. 381-414). San Diego, CA: Academic Press.
  • Johansson, R. S. (1998). Sensory input and control of grip. Novartis Foundation Symposia, 218, 45-63.
  • Johansson, R. S. (2002). Dynamic use of tactile afferent signals in control of dexterous manipulation. Advances in Experimental Medicine and Biology, 508, 397-410.
  • Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56, 550-564.
  • Johansson, R. S., & Westling, G. (1987). Significance of cutaneous input for precise hand movements. Electroencephalography & Clinical Neurophysiology, 39(Suppl. 1), 53-7.
  • Kautz, S. A., & Hull, M. L. (1995). Dynamic optimization analysis for equipment setup problems in endurance cycling. Journal of Biomechanics, 28, 1391-1401.
  • Kerr, J. R., & Roth, B. (1986). Analysis of multifingered hands. Journal of Robotic Research, 4, 3-17.
  • Kilbreath, S. L., & Gandevia, S. C. (1994). Limited independent flexion of the thumb and fingers in human subjects. Journal of Physiology, 479, 487-497.
  • Kilbreath, S. L., Gorman, R. B., Raymond, J., & Gandevia, S. C. (2002). Distribution of the forces produced by motor unit activity in the human flexor digitorum profundus. Journal of Physiology, 543, 289-296.
  • Kinoshita, H., Backstrom, L., Flanagan, J. R., & Johansson, R. S. (1997). Tangential torque effects on the control of grasp forces when holding objects with a precision grip. Journal of Neurophysiology, 78, 1619-1630.
  • Kinoshita, H., & Francis, P. R. (1996). A comparison of prehension force control in young and elderly individuals. European Journal of Applied Physiology, 74, 450-460.
  • Kinoshita, H., Kawai, S., & Ikuta, K. (1995). Contributions and co-ordination of individual fingers in multiple finger prehension. Ergonomics, 38, 1212-1230.
  • Kinoshita, H., Kawai, S., Ikuta, K., & Teraoka, T. (1996). Individual finger forces acting on a grasped object during shaking actions. Ergonomics, 39, 243-256.
  • Kuo, A. D. (1994). A mechanical analysis of force distribution between redundant, multiple degree-of-freedom actuators in the human: Implications for the central nervous system. Human Movement Science, 13, 635-663.
  • Latash, M. L., Gao, F., & Zatsiorsky, V. M. (2003). Similarities and differences in finger interaction across typical and atypical populations. Journal of Applied Biomechanics, 19, 264-270.
  • Latash, M. L., Danion, F., Scholz, J. F., Zatsiorsky, V. M., & Schöner, G. (2003). Approaches to analysis of handwriting as a task of coordinating a redundant motor system. Human Movement Science, 22, 153-171.
  • Latash, M. L., Shim, J. K., Gao, F., & Zatsiorsky, V. M. (2004). Rotational equilibrium during multi-digit pressing and prehension. Motor Control, 8, 392-404.
  • Lee, S. W., & Zhang, X. (2005). Development and evaluation of an optimization-based model for power-grip posture prediction. Journal of Biomechanics, 38, 1591-1597.
  • Li, Z. M., Latash, M. L., & Zatsiorsky, V. M. (1998). Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119, 276-286.
  • Li, Z. M., Latash, M. L., Newell, K. M., & Zatsiorsky, V. M. (1998). Motor redundancy during maximal voluntary contraction in four-finger tasks. Experimental Brain Research, 122, 71-78.
  • Li, Z. M., Zatsiorsky, V. M., Latash, M. L., & Bose, N. K. (2002). Anatomically and experimentally based neural networks modeling force coordination in static multi-finger tasks. Neurocomputing, 47, 259-275.
  • MacKenzie, C. L., & Iberall, T. (1994). The grasping hand. New York: North-Holland.
  • Mason, M. T., & Salisbury, J. K. (1985). Robot hands and the mechanics of manipulation. Cambridge, MA: MIT Press.
  • McIntyre, J., Berthoz, A., & Lacquaniti, F. (1998). Reference frames and internal models for visuo-manual coordination: What can we learn from microgravity experiments? Brain Research Reviews, 28, 143-154.
  • Monzee, J., Lamarre, Y., & Smith, A. M. (2003). The effects of digital anesthesia on force control using a precision grip. Journal of Neurophysiology, 89, 672-683.
  • Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton, LA: CRC Press.
  • Nichols, T. R. (1994). A biomechanical perspective on spinal mechanisms of coordinated muscular action: An architecture principle. Acta Anatomica (Basel), 151, 1-13.
  • Niu, X., Latash, M. L., & Zatsiorsky, V. M. (2007). Prehension synergies in the grasps with complex friction patterns: Local vs. synergic effects and the template control. Journal of Neurophysiology, 98, 16-28.
  • Nowak, D. A., & Hermsdörfer, J. (2003). Digit cooling influences grasp efficiency during manipulative tasks. European Journal of Applied Physiology, 89, 127-133.
  • Nowak, D. A., Hermsdörfer, J., Glasauer, S., Philipp, J., Meyer, L., & Mai, N. (2001). The effects of digital anaesthesia on predictive grasp force adjustments during vertical movements of a grasped object. European Journal of Neuroscience, 14, 756-762.
  • Pataky, T. C., Latash, M. L., & Zatsiorsky, V. M. (2004a). Prehension synergies during nonvertical grasping: Part I. Experimental observations. Biological Cybernetics, 91, 148-158.
  • Pataky, T. C., Latash, M. L., & Zatsiorsky, V. M. (2004b). Prehension synergies during nonvertical grasping: Part II. Modeling and optimization. Biological Cybernetics, 91, 231-242.
  • Pataky, T. C., Latash, M. L., & Zatsiorsky, V. M. (2004c). Tangential load sharing among fingers during prehension. Ergonomics, 47, 876-889.
  • Pataky, T. C., Latash, M. L., & Zatsiorsky, V. M. (2007a). Finger interaction during maximal radial and ulnar deviation efforts: experimental data and linear neural network modeling. Experimental Brain Research, 179, 301-312.
  • Pataky, T. C., Latash, M. L., & Zatsiorsky, V. M. (2007b). Multi-finger opposition strength and coordination. Journal of Hand Therapy (in press).
  • Prilutsky, B. I. (2000). Coordination of two- and one-joint muscles: Functional consequences and implications for motor control. Motor Control, 4, 1-44.
  • Prilutsky, B. I., & Zatsiorsky, V. M. (2002). Optimization-based models of muscle coordination. Exercise & Sports Science Reviews, 30, 32-38.
  • Quaney, B. M., & Cole, K. J. (2004). Distributing vertical forces between the digits during gripping and lifting: The effects of rotating the hand versus rotating the object. Experimental Brain Research, 155, 145-155.
  • Raasch, C. C., Zajac, F. E., Ma, B., & Levine, W. S. (1997). Muscle coordination of maximum-speed pedaling. Journal of Biomechanics, 30, 595-602.
  • Rearick, M. P., & Santello, M. (2002). Force synergies for multifingered grasping: Effect of predictability in object center of mass and handedness. Experimental Brain Research, 144, 38-49.
  • Rosenbaum, D. A., Halloran, E. S., & Cohen, R. G. (2006). Grasping movement plans. Psychonomic Bulletin & Reviews, 13, 918-922.
  • Rumann, W. S. (1991). Statically indeterminate structures. New York: Wiley-Interscience.
  • Santello, M., & Soechting, J. F. (2000). Force synergies for multifingered grasping. Experimental Brain Research, 133, 457-467.
  • Schieber, M. H., & Santello, M. (2004). Hand function: Peripheral and central constraints on performance. Journal of Applied Physiology, 96, 2293-2300.
  • Serrien, D. J., & Wiesendanger, M. (1999a). Grip-load force coordination in cerebellar patients. Experimental Brain Research, 128, 76-80.
  • Serrien, D. J., & Wiesendanger, M. (1999b). Role of the cerebellum in tuning anticipatory and reactive grasp force responses. Journal of Cognitive Neuroscience, 11, 672-681.
  • Serrien, D. J., Kaluzny, P., Wicki, U., & Wiesendanger, M. (1999). Grasp force adjustments induced by predictable load perturbations during a manipulative task. Experimental Brain Research, 124, 100-106.
  • Shim, J. K., Latash, M. L., & Zatsiorsky, V. M. (2003). Prehension synergies: Trial-to-trial variability and hierarchical organization of stable performance. Experimental Brain Research, 152, 173-184.
  • Shim, J. K., Latash, M. L., & Zatsiorsky, V. M. (2004). Finger coordination during moment production on a mechanically fixed object. Experimental Brain Research, 157, 457-467.
  • Shim, J. K., Latash, M. L., & Zatsiorsky, V. M. (2005a). Prehension synergies in three dimensions. Journal of Neurophysiology, 93, 766-776.
  • Shim, J. K., Latash, M. L., & Zatsiorsky, V. M. (2005b). Prehension synergies: Trial-to-trial variability and principle of super-position during static prehension in three dimensions. Journal of Neurophysiology, 93, 3649-3658.
  • Shim, J. K., & Park, J. (2007, February 6). Prehension synergies: principle of superposition and hierarchical organization in circular object prehension [Electronic version]. Experimental Brain Research, 180, 541-556.
  • Smith, M. A., & Soechting, J. F. (2005). Modulation of grasping forces during object transport. Journal of Neurophysiology, 93, 137-145.
  • Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics, 61, 89-101.
  • Vaillancourt, D. E., Slifkin, A. B., & Newell, K. M. (2002). Interdigit individuation and force variability in the precision grip of young, elderly, and Parkinson's disease participants. Motor Control, 6, 113-128.
  • Valero-Cuevas, F. J., Zajac, F. E., & Burgar, C. G. (1998). Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. Journal of Biomechanics, 31, 693-703.
  • Westling, G., & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Experimental Brain Research, 53, 277-284.
  • Winstein, C. J., Abbs, J. H., & Petashnick, D. (1991). Influences of object weight and instruction on grasp force adjustments. Experimental Brain Research, 87, 465-469.
  • Yoshikawa, T. (1990). Foundations in robotics. Cambridge, MA: MIT Press.
  • Yoshikawa, T., & Nagai, K. (1991). Manipulating and grasping forces in manipulation by multifingered robot hands. IEEE Transactions on Robotics and Automatation, 7, 67-77.
  • Zatsiorsky, V. M. (2002). Kinetics of human motion. Champaign, IL: Human Kinetics.
  • Zatsiorsky, V. M., Gao, F., & Latash, M. L. (2003a). Finger force vectors in multi-finger prehension. Journal of Biomechanics, 36, 1745-1749.
  • Zatsiorsky, V. M., Gao, F., & Latash, M. L. (2003b). Prehension synergies: Effects of object geometry and prescribed torques. Experimental Brain Research, 148, 77-87.
  • Zatsiorsky, V. M., Gao, F., & Latash, M. L. (2005). Motor control goes beyond physics: Differential effects of gravity and inertia on finger forces during manipulation of hand-held objects. Experimental Brain Research, 162, 300-308.
  • Zatsiorsky, V. M., Gao, F., & Latash, M. L. (2006). Prehension stability: Experiments with expanding and contracting handle. Journal of Neurophysiology, 95, 2513-2529.
  • Zatsiorsky, V. M., Gregory, R. W., & Latash, M. L. (2002a). Force and torque production in static multifinger prehension: Biomechanics and control: Part I. Biomechanics. Biological Cybernetics, 87, 50-57.
  • Zatsiorsky, V. M., Gregory, R. W., & Latash, M. L. (2002b). Force and torque production in static multifinger prehension: Biomechanics and control: Part II. Control. Biological Cybernetics, 87, 40-49.
  • Zatsiorsky, V. M., & Latash, M. L. (2004). Prehension synergies. Exercise & Sports Science Reviews, 32, 75-80.
  • Zatsiorsky, V. M., Latash, M. L., Gao, F., & Shim, J. K. (2004). The principle of superposition in human prehension. Robotica, 22, 231-234.
  • Zatsiorsky, V. M., Li, Z.-M., & Latash, M. L. (1998). Coordinated force production in multi-finger tasks: Finger interaction and neural network modeling. Biological Cybernetics, 79, 139-150.
  • Zatsiorsky, V. M., Li, Z. M., & Latash, M. L. (2000). Enslaving effects in multi-finger force production. Experimental Brain Research, 131, 187-195.
  • Zuo, B. R., & Qian, W. H. (2000). A general dynamic force distribution algorithm for multifingered grasping. IEEE Transactions on Systems, Man and Cybernetics. Part B- Cybernetics, 30, 185-192.
  • Van Doren, C. L. (1998). Grasp stiffness as a function of grasp force and finger span. Motor Control, 2, 352-378.
  • Valero-Cuevas, F. J. (2005). An integrative approach to the biomechanical function and neuromuscular control of the fingers. Journal of Biomechanics, 38, 673-684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.