438
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Cudrania tricuspidata water extract improved obesity-induced hepatic insulin resistance in db/db mice by suppressing ER stress and inflammation

, , &
Article: 29165 | Received 16 Jul 2015, Accepted 05 Oct 2015, Published online: 26 Oct 2015

References

  • Moore MC, Coate KC, Winnick JJ, An Z, Cherrington AD. Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr. 2012; 3: 286–94.
  • Paquot N, Scheen AJ, Dirlewanger M, Lefèbvre PJ, Tappy L. Hepatic insulin resistance in obese non-diabetic subjects and in type 2 diabetic patients. Obes Res. 2002; 10: 129–34.
  • Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest. 1996; 98: 378–85.
  • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001; 414: 799–806.
  • Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, etal. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000; 6: 87–97.
  • Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998; 333: 471–90.
  • Nakae J, Kitamura T, Silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001; 108: 1359–67.
  • Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, etal. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003; 423: 550–5.
  • Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest. 1992; 90: 1323–7.
  • Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002; 8: 1376–82.
  • Roden M, Bernroider E. Hepatic glucose metabolism in humans – its role in health and disease. Best Prac Res Clin Endocrinol Metab. 2003; 17: 365–83.
  • Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, etal. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004; 306: 457–61.
  • Oakes ND, Cooney GJ, Camilleri S, Chisholm DJ, Kraegen EW. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes. 1997; 46: 1768–74.
  • Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006; 444: 840–6.
  • Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, etal. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005; 11: 191–8.
  • Hotamisligil GS. Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int J Obes (Lond). 2008; 32: S52–54.
  • Schröder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci. 2008; 65: 862–94.
  • Shen X, Zhang K, Kaufman RJ. The unfolded protein response – a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat. 2004; 28: 79–92.
  • Ozawa K, Miyazaki M, Matsuhisa M, Takano K, Nakatani Y, Hatazaki M, etal. The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes. 2005; 54: 657–63.
  • Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, etal. A central role for JNK in obesity and insulin resistance. Nature. 2002; 420: 333–6.
  • Jiao P, Chen Q, Shah S, Du J, Tao B, Tzameli I, etal. Obesity-related upregulation of monocyte chemotactic factors in adipocytes: involvement of nuclear factor-kappaB and c-Jun NH2-terminal kinase pathways. Diabetes. 2009; 58: 104–15.
  • Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011; 13: 11–22.
  • Hotamisligil GS. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes. 2005; 54: 73–8.
  • Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol. 2006; 26: 3071–84.
  • Lee BW, Lee JH, Lee ST, Lee HS, Lee WS, Jeong TS, etal. Antioxidant and cytotoxic activities of xanthones from Cudrania tricuspidata. Bioorg Med Chem Lett. 2005; 15: 5548–52.
  • Kim JY, Chung JH, Hwang I, Kwan YS, Chai JK, Lee KH, etal. Quantification of quercetin and kaempferol contents in different parts of Cudrania tricuspidata and their processed foods. Korean J Hort Sci Technol. 2009; 27: 489–96.
  • Joo HY, Lim KT. Protective effect of glycoprotein isolated from Cudrania tricuspidata on liver in CCl4-treated A/J mice. Korean J Food Sci Technol. 2009; 41: 93–9.
  • Kim YS, Lee Y, Kim J, Sohn E, Kim CS, Lee YM, etal. Inhibitory activities of Cudrania tricuspidata leaves on pancreatic lipase in vitro and lipolysis in vivo. Evid Base Compl Alternative Med. 2012; 2012: 878365.
  • Yang G, Lee K, Lee M, Ham I, Choi HY. Inhibition of lipopolysaccharide-induced nitric oxide and prostaglandin E2 production by chloroform fraction of Cudrania tricuspidata in RAW 264.7 macrophages. BMC Compl Alternative Med. 2012; 12: 250.
  • Lee EG, Lee SL, Chae HJ, Park SJ, Lee YC, Yoo WH. Ethyl acetate fraction from Cudrania tricuspidata inhibits IL-1κ-induced rheumatoid synovial fibroblast proliferation and MMPs, COX-2 and PGE2 production. Biol Res. 2010; 43: 225–31.
  • Park JH, Lee KW, Sung KS, Kim SS, Cho KD, Lee BH, etal. Effect of diets with mulberry leaf and Cudrania tricuspidata leaf powder supplements on blood glucose-related biomarkers in streptozotocin-induced diabetic rats. J Korean Soc Fod Sci Nutr. 2012; 41: 766–73.
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993; 259: 87–91.
  • Cottam DR, Mattar SG, Barinas-Mitchell E, Eid G, Kuller L, Kelley DE, etal. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes Surg. 2004; 14: 589–600.
  • Hampton RY. ER stress response: getting the UPR hand on misfolded proteins. Curr Biol. 2000; 10: R518–21.
  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 2000; 5: 897–904.
  • DuRose JB, Scheuner D, Kaufman RJ, Rothblum LI, Niwa M. Phosphorylation of eukaryotic translation initiation factor 2alpha coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Mol Cell Biol. 2009; 29: 4295–307.
  • Woo CW, Cui D, Arellano J, Dorweiler B, Harding H, Fitzgerald KA, etal. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol. 2009; 11: 1473–80.
  • Choudhury M, Qadri I, Rahman SM, Schroeder-Gloeckler J, Janssen RC, Friedman JE. C/EBPβ is AMP kinase sensitive and up-regulates PEPCK in response to ER stress in hepatoma cells. Mol Cell Endocrinol. 2011; 331: 102–28.
  • Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab. 2008; 7: 520–32.
  • Pedersen TA, Bereshchenko O, Garcia-Silva S, Ermakova O, Kurz E, Mandrup S, etal. Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene expression in vivo. EMBO J. 2007; 26: 1081–93.
  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, etal. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002; 415: 92–6.
  • Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, etal. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000; 287: 664–6.
  • Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, etal. Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem. 2004; 279: 45803–9.
  • Kobayashi K, Forte TM, Taniguchi S, Ishida BY, Oka K, Chan L. The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. Metabolism. 2000; 49: 22–31.
  • Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, etal. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996; 84: 491–5.
  • Achard CS, Laybutt DR. Lipid-induced endoplasmic reticulum stress in liver cells results in two distinct outcomes: adaptation with enhanced insulin signaling or insulin resistance. Endocrinology. 2012; 153: 2164–77.
  • Yamagishi N, Ueda T, Mori A, Saito Y, Hatayama T. Decreased expression of endoplasmic reticulum chaperone GRP78 in liver of diabetic mice. Biochem Biophys Res Commun. 2012; 417: 364–70.
  • Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, etal. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006; 313: 1137–40.
  • Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, etal. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003; 112: 1821–30.
  • Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001; 280: E745–51. [PubMed Abstract].
  • Jeong GS, Lee DS, Kim YC. Cudratricusxanthone A from Cudrania tricuspidata suppresses pro-inflammatory mediators through expression of anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. Int Immunopharmacol. 2009; 9: 241–6.
  • Guo B, Li Z. Endoplasmic reticulum stress in hepatic steatosis and inflammatory bowel diseases. Front Genet. 2014; 5: 242.