682
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration

, , , , , & show all
Article: 29884 | Received 26 Sep 2015, Accepted 07 Nov 2015, Published online: 22 Dec 2015

References

  • Nuhu AA. Bioactive micronutrients in coffee: recent analytical approaches for characterization and quantification. ISRN Nutr. 2014; 2014: 384230. doi:http://dx.doi.org/10.1155/2014/384230.
  • Casal S, Oliveira MB, Alves MR, Ferreira MA. Discriminate analysis of roasted coffee varieties for trigonelline, nicotinic acid, and caffeine content. J Agric Food Chem. 2000; 48: 3420–4.
  • Lang R, Yagar EF, Wahl A, Beusch A, Dunkel A, Dieminger N, etal. Quantitative studies on roast kinetics for bioactives in coffee. J Agric Food Chem. 2013; 61: 12123–8.
  • Zhao HQ, Qu Y, Wang XY, Zhang HJ, Li FM, Masao H. Determination of trigonelline in Trigonella foenum-graecum by HPLC. Zhongguo Zhong Yao Za Zhi. 2002; 27: 194–6.
  • Tramontano WA, Lynn DG, Evans LS. Trigonelline, nicotinic acid and nicotinamide in seedlings of Pisum sativum. Phytochemistry. 1983; 22: 673–8.
  • Boettler U, Sommerfeld K, Volz N, Pahlke G, Teller N, Somoza V, etal. Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem. 2011; 22: 426–40.
  • Kalaska B, Piotrowski L, Leszczynska A, Michalowski B, Kramkowski K, Kaminski T, etal. Antithrombotic effects of pyridinium compounds formed from trigonelline upon coffee roasting. J Agric Food Chem. 2014; 62: 2853–60.
  • Gallus S, Tavani A, Negri E, La Vecchia C. Does coffee protect against liver cirrhosis?. Ann Epidemiol. 2002; 12: 202–5.
  • Jang ES, Jeong SH, Lee SH, Hwang SH, Ahn SY, Lee J, etal. The effect of coffee consumption on the development of hepatocellular carcinoma in hepatitis B virus endemic area. Liver Int. 2013; 33: 1092–9.
  • Hirakawa N, Okauchi R, Miura Y, Yagasaki K. Anti-invasive activity of niacin and trigonelline against cancer cells. Biosci Biotechnol Biochem. 2005; 69: 653–8.
  • Müller M, Banning A, Brigelius-Flohé R, Kipp A. Kipp Nrf2 target genes are induced under marginal selenium-deficiency. Genes Nutr. 2010; 5: 297–307.
  • Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, etal. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008; 76: 1485–9.
  • Chen B, Zhang Y, Wang Y, Rao J, Jiang X, Xu Z. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression. J Steroid Biochem Mol Biol. 2014; 143C: 11–18.
  • Jo GH, Kim GY, Kim WJ, Park KY, Choi YH. Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway. Int J Oncol. 2014; 45: 1497–506.
  • Singh B, Shoulson R, Chatterjee A, Ronghe A, Bhat NK, Dim DC, etal. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways. Carcinogenesis. 2014; 35: 1872–80.
  • Sebens S, Bauer I, Geismann C, Grage-Griebenow E, Ehlers S, Kruse ML, etal. Inflammatory macrophages induce Nrf2 transcription factor-dependent proteasome activity in colonic NCM460 cells and thereby confer anti-apoptotic protection. J Biol Chem. 2011; 286: 40911–21.
  • Kim SK, Yang JW, Kim MR, Roh SH, Kim HG, Lee KY, etal. Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Radic Biol Med. 2008; 45: 537–46.
  • Akhdar H, Loyer P, Rauch C, Corlu A, Guillouzo A, Morel F. Involvement of Nrf2 activation in resistance to 5-fluorouracil in human colon cancer HT-29 cells. Eur J Cancer. 2009; 45: 2219–27.
  • Hong YB, Kang HJ, Kwon SY, Kim HJ, Kwon KY, Cho CH, etal. Nuclear factor (erythroid-derived 2)-like 2 regulates drug resistance in pancreatic cancer cells. Pancreas. 2010; 39: 463–72.
  • Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, etal. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res. 2010; 16: 3743–53.
  • Pi J, Bai Y, Reece JM, Williams J, Liu D, Freeman ML, etal. Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2. Free Radic Biol Med. 2007; 42: 1797–806.
  • Niture SK, Kaspar JW, Shen J, Jaiswal AK. Nrf2 signaling and cell survival. Toxicol Appl Pharmacol. 2010; 224: 37–42.
  • Banerjee P, Basu A, Datta D, Gasser M, Waaga-Gasser AM, Pal S. The heme oxygenase-1 protein is overexpressed in human renal cancer cells following activation of the Ras–Raf–ERK pathway and mediates anti-apoptotic signal. J Biol Chem. 2011; 286: 33580–90.
  • Funes JM, Henderson S, Kaufman R, Flanagan JM, Robson M, Pedley B, etal. Oncogenic transformation of mesenchymal stem cells decreases Nrf2 expression favoring in vivo tumor growth and poorer survival. Mol Cancer. 2014; 13: 20.
  • Amălinei C, Căruntu ID, Bălan RA. Biology of metalloproteinases. Rom J Morphol Embryol. 2007; 48: 323–34.
  • Kostova E, Slaninka-Miceska M, Labacevski N, Jakovski K, Trojachanec J, Atanasovska E, etal. Expression of matrix metalloproteinases 2, 7 and 9 in patients with colorectal cancer. Vojnosanit Pregl. 2014; 71: 52–9.
  • Mäkinen LK, Häyry V, Hagström J, Sorsa T, Passador-Santos F, Keski-Säntti H, etal. Matrix metalloproteinase-7 and matrix metalloproteinase-25 in oral tongue squamous cell carcinoma. Head Neck. 2014; 36: 1783–8.
  • Long ZW, Wang JL, Wang YN. Matrix metalloproteinase-7 mRNA and protein expression in gastric carcinoma: a meta-analysis. Tumour Biol. 2014; 35: 11415–26.
  • Pan H, Wang H, Zhu L, Mao L, Qiao L, Su X. The role of Nrf2 in migration and invasion of human glioma cell U251. World Neurosurg. 2013; 80: 363–70.
  • Shen H, Yang Y, Xia S, Rao B, Zhang J, Wang J. Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus. 2014; 27: 685–92.
  • You BJ, Wu YC, Lee CL, Lee HZ. Non-homologous end joining pathway is the major route of protection against 4β-hydroxywithanolide E-induced DNA damage in MCF-7 cells. Food Chem Toxicol. 2014; 65: 205–12.
  • Lin CL, Chen HJ, Hou WC. Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecyl sulfate polyacrylamide gels. Electrophoresis. 2002; 23: 513–16.
  • Leung HW, Kuo CL, Yang WH, Lin CH, Lee HZ. Antioxidant enzymes activity involvement in luteolin-induced human lung squamous carcinoma CH27 cell apoptosis. Eur J Pharmacol. 2006; 534: 12–18.
  • Huang YP, Ni CH, Lu CC, Chiang JH, Yang JS, Ko YC, etal. Suppressions of migration and invasion by cantharidin in TSGH-8301 human bladder carcinoma cells through the inhibitions of matrix metalloproteinase-2/-9 signaling. Evid Based Complement Alternat Med. 2013; 2013: 190281. doi:http://dx.doi.org/10.1155/2013/190281.
  • Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, etal. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis. 2008; 29: 1235–43.
  • Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, etal. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene. 2013; 32: 4825–35.
  • Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F. A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell. 2006; 22: 217–30.
  • Gaire M, Magbanua Z, McDonnell S, McNeil L, Lovett DH, Matrisian LM. Structure and expression of the human gene for the matrix metalloproteinase matrilysin. J Biol Chem. 1994; 269: 2032–40.
  • Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood). 2006; 231: 20–7.
  • Yang B, Gao J, Rao Z, Zhang B, Ouyang W, Yang C. Antisense oligonucleotide targeting matrix metalloproteinase-7 (MMP-7) changes the ultrastructure of human A549 lung adenocarcinoma cells. Ultrastruct Pathol. 2011; 35: 256–9.
  • Shiomi T, Okada Y. MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev. 2003; 22: 145–52.
  • Chuang HC, Su CY, Huang HY, Huang CC, Chien CY, Du YY, etal. Active matrix metalloproteinase-7 is associated with invasion in buccal squamous cell carcinoma. Mod Pathol. 2008; 21: 1444–50.
  • Xing XJ, Gu XH, Ma TF. Relationship of serum MMP-7 levels for colorectal cancer: a meta-analysis. Tumour Biol. 2014; 35: 10515–22.
  • Wu JY, Yi C, Chung HR, Wang DJ, Chang WC, Lee SY, etal. Potential biomarkers in saliva for oral squamous cell carcinoma. Oral Oncol. 2010; 46: 226–31.
  • Chang MC, Chen CA, Chen PJ, Chiang YC, Chen YL, Mao TL, etal. Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. Biochem J. 2012; 442: 293–302.
  • Tan X, Egami H, Abe M, Nozawa F, Hirota M, Ogawa M. Involvement of MMP-7 in invasion of pancreatic cancer cells through activation of the EGFR mediated MEK-ERK signal transduction pathway. J Clin Pathol. 2005; 58: 1242–8.