688
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Potency of pre–post treatment of coenzyme Q10 and melatonin supplement in ameliorating the impaired fatty acid profile in rodent model of autism

, , , &
Article: 28127 | Received 06 Apr 2015, Accepted 10 Feb 2016, Published online: 03 Mar 2016

References

  • El-Ansary AK, Ben BA, Kotb M. Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation. 2012; 9: 74. [PubMed Abstract] [PubMed CentralFull Text].
  • MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res. 2011; 217(1): 47–54. [PubMed Abstract].
  • Shultz SR, MacFabe DF, Ossenkopp KP, Scratch S, Whelan J, Taylor R, etal. Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology. 2008; 54: 901–11. [PubMed Abstract].
  • Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr. 1992; 120(Suppl 4): 129–38.
  • Anderson GJ, Tso PS, Connor WE. Incorporation of chylomicron fatty acids into the developing rat brain. J Clin Invest. 1994; 936: 2764–7.
  • Bell JG, Miller D, MacDonald DJ, MacKinlay EE, Dick JR, Cheseldine S. The fatty acid compositions of erythrocyte and plasma polar lipids in children with autism, developmental delay or typically developing controls and the effect of fish oil intake. Br J Nutr. 2010; 103: 1160–7. [PubMed Abstract].
  • Richardson AJ, Calvin CM, Clisby C, Schoenheimer DR, Montgomery P, Hall JA, etal. Fatty acid deficiency signs predict the severity of reading and related difficulties in dyslexic children. Prostaglandins Leukot Essent Fatty Acids. 2000; 63: 69–74. [PubMed Abstract].
  • Stevens LJ, Zentall SS, Abate ML, Kuczek T, Burgess JR. Omega-3 fatty acids in boys with behavior, learning, and health problems. Pysichol Behav. 1996; 59: 915–20.
  • Stevens LJ, Zentall SS, Deck JL, Abate ML, Watkins BA, Lipp SR, etal. Essential fatty acid metabolism in boys with attention deficit hyperactivity disorder. Am J Clin Nutr. 1995; 62: 761–8. [PubMed Abstract].
  • Richardson AJ. Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. Int Rev Psychiatry. 2006; 18: 155–72. [PubMed Abstract].
  • Bell JG, MacKinlay EE, Dick JR, MacDonald DJ, Boyle RM, Glen AC. Essential fatty acids and phospholipase A2 in autistic spectrum disorders. Prostaglandins Leukot Essent Fatty Acids. 2004; 71: 201–4. [PubMed Abstract].
  • Tostes MH, Teixeira HC, Gattaz WF, Brandão MA, Raposo NR. Altered neurotrophin, neuropeptide, cytokines and nitric oxide levels in autism. Pharmacopsychiatry. 2012; 45: 241–3. [PubMed Abstract].
  • El-Ansary AK, Ben Bacha AG, Al-Ayahdi LY. Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia. Lipids Health Dis. 2011; 10: 1–8.
  • Frye RE, Rossignol DA. Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr Res. 2011; 69: 41–7.
  • Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC. Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids. 2005; 73: 379–84. [PubMed Abstract].
  • Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin – the antioxidant proteins. Life Sci. 2004; 75: 2539–49. [PubMed Abstract].
  • James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, etal. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004; 80(6): 1611–17. [PubMed Abstract].
  • Gadani A, El-Ansary O, Attas L, Al-Ayadhi. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem. 2009; 42: 1032–40.
  • Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012; 17(3): 290–314. [PubMed Abstract] [PubMed CentralFull Text].
  • Tsao CY, Mendell JR. Autistic disorder in 2 children with mitochondrial disorders. J Child Neurol. 2007; 22(9): 1121–3. [PubMed Abstract].
  • Poling JS, Frye RE, Shoffner J, Zimmerman AW. Developmental regression and mitochondrial dysfunction in a child with autism. J Child Neurol. 2006; 21(2): 170–2. [PubMed Abstract] [PubMed CentralFull Text].
  • Ezugha H, Goldenthal M, Valencia I, Anderson CE, Legido A, Marks H. 5q14.3 deletion manifesting as mitochondrial disease and autism: case report. J Child Neurol. 2010; 10: 1232–5.
  • Geier DA, Kern JK, Davis G, King PG, Adams JB, Young JL, etal. A prospective double-blind, randomized clinical trial of levocarnitine to treat autism spectrum disorders. Med Sci Monit. 2011; 17(6): 15–23.
  • Wright B, Sims D, Smart S, Alwazeer A, Alderson-Day B, Allgar V. Melatonin versus placebo in children with autism spectrum conditions and severe sleep problems not amenable to behavior management strategies: a randomised controlled crossover trial. J Autism Dev Disord. 2011; 41(2): 175–84. doi: http://dx.doi.org/10.1007/s10803-010-1036-5 [PubMed Abstract].
  • Tilford JM, Payakachat N, Kuhlthau KA, Pyne JM, Kovacs E, Bellando J, etal. Treatment for sleep problems in children with autism and caregiver spillover effects. J Autism Dev Disord. 2015; 45(11): 3613–23. [PubMed Abstract].
  • MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE, Boond F, etal. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res. 2007; 176: 149–69. [PubMed Abstract].
  • Fouad AA, Al-Sultan AI, Refaie SM, Yacoubi MT. Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice. Toxicology. 2010; 274(1–3): 49–56. [PubMed Abstract].
  • Ambriz-Tututi M, Granados-Soto V. Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors. Pain. 2007; 132(3): 273–80. [PubMed Abstract].
  • Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957; 226(1): 497–509. [PubMed Abstract].
  • Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta. 2010; 1801(11): 1175–83. [PubMed Abstract].
  • Roy CC, Kien CL, Bouthillier L, Levy E. Short-chain fatty acids: ready for prime time?. Nutr Clin Pract. 2006; 21(4): 351–66. [PubMed Abstract].
  • Karuri AR, Dobrowsky E, Tannock IF. Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment. Br J Cancer. 1993; 68(6): 1080–7. [PubMed Abstract] [PubMed CentralFull Text].
  • Conn AR, Fell DI, Steele RD. Characterization of alpha-keto acid transport across blood-brain barrier in rats. Am J Physiol. 1983; 245(3): 253–60.
  • Yamada Y, Marshall S, Specian RD, Grisham MB. A comparative analysis of two models of colitis in rats. Gastroenterology. 1992; 102(5): 1524–34. [PubMed Abstract].
  • Zelitlin IJ, Norris AA, Standstead A. Animal model of colitis. Mechanism of gastrointestinal inflammation. [PubMed Abstract] [PubMed CentralFull Text].
  • El-Ansary A, Shaker G, Siddiqi NJ, Al-Ayadhi LY. Possible ameliorative effects of antioxidants on propionic acid/clindamycin –induced neurotoxicity in Syrian hamsters. Gut Pathog. 2013; 5: 32. [PubMed Abstract] [PubMed CentralFull Text].
  • Huang HM, Zhang H, Xu H, Gibson GE. Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation. Biochim Biophys Acta. 2003; 1637: 119–26. [PubMed Abstract].
  • Huang HM, Ou HC, Chen HL, Hou RC, Jeng KC. Protective effect of alpha-keto-beta-methyl-n-valeric acid on BV-2 microglia under hypoxia or oxidative stress. Ann N Y Acad Sci. 2005; 1042: 272–8. [PubMed Abstract].
  • Bourre JM, Nicole GD, Morand O, Nicole B. Importance of exogenous saturated fatty acids during brain development and myelination in mice. Ann Biol Anim Bioch Biophys. 1979; 19: 173–80.
  • Cremer JE, Teal HM, Heath DF, Cavanagh JB. The influence of portocaval anastomosis on the metabolism of labeled octanoate, butyrate and leucine in rat brain. J Neurochem. 1974; 28: 215–22.
  • Nariai T, DeGeorge JJ, Greig NH, Genka S, Rapoport SI, Purdon AD. Differences in rates of incorporation of intravenously injected radiolabeled fatty acids into phospholipids of intracerebrally implanted tumor and brain in awake rats. Clin Exp Metastasis. 1994; 12: 213–25. [PubMed Abstract].
  • Freed LM, Wakabayashi S, Bell JM, Rapoport SI. Effect of inhibition of 13-oxidation on incorporation of [U-“C] palmitate and [1- 14C]arachidonate into brain lipids. Brain Res. 1994; 645: 41–8. [PubMed Abstract].
  • Frye RE, Melnyk S, Macfabe DF. Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder. Transl Psychiatry. 2013; 22: 220. doi: http://dx.doi.org/10.1038/tp.2012.143 .
  • Bell JG, Sargent JR, Tocher DR, Dick JR. Red blood cell fatty acid compositions in a patient with autistic spectrum disorder: a characteristic abnormality in neurodevelopmental disorders?. Prostaglandins Leukot Essent Fatty Acids. 2000; 63: 21–5. [PubMed Abstract].
  • Pastural E, Ritchie S, Lu Y, Jin W, Kavianpour A, Khine Su-Myat K, etal. Novel plasma phospholipid biomarkers of autism: mitochondrial dysfunction as a putative causative mechanism. Prostaglandins Leukot Essent Fatty Acids. 2009; 81: 253–64. [PubMed Abstract].
  • Wiest MM, German JB, Harvey DJ, Watkins SM, Hertz-Picciotto I. Plasma fatty acid profiles in autism: a case-control study. Prostaglandins Leukot Essent Fatty Acids. 2009; 80: 221–7. [PubMed Abstract].
  • Bu B, Ashwood P, Harvey D, King IB, Water JV, Jin LW. Fatty acid compositions of red blood cell phospholipids in children with autism. Prostaglandins Leukot Essent Fatty Acids. 2006; 74: 215–21. [PubMed Abstract].
  • MacFabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis. 2012; 23 19260. doi: http://dx.doi.org/10.3402/mehd.v23i0.19260 .
  • Meiri G, Bichovsky Y, Belmaker RH. Omega 3 fatty acid treatment in autism. J Child Adolesc Psychopharmacol. 2009; 19: 449–51. [PubMed Abstract].
  • Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003; 48(3): 195–203. [PubMed Abstract].
  • Assisi A, Banzi R, Buonocore C, Capasso F, Di Muzio V, Michelacci F, etal. Fish oil and mental health: the role of n-3 long-chain polyunsaturated fatty acids in cognitive development and neurological disorders. Int Clin Psychopharmacol. 2006; 21(6): 319–36. [PubMed Abstract].
  • El-Ansary AK, Al-Ayadhi L. Relative abundance of short chain and polyunsaturated fatty acids in propionic acid-induced autistic features in rat pups as potential markers in autism. Lipids Health Dis. 2014; 13: 140. [PubMed Abstract] [PubMed CentralFull Text].
  • El-Ansary AK, Al-Daihan SK, El-Gezeery AR. On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups. Lipids Health Dis. 2011; 10: 142. [PubMed Abstract] [PubMed CentralFull Text].
  • Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R. Melatonin in Alzheimer's disease and other neurodegenerative disorders. Behav Brain Funct. 2006; 2: 15. doi: http://dx.doi.org/10.1186/1744-9081-2-15 [PubMed Abstract] [PubMed CentralFull Text].
  • Horrobin DF, Manku MS, Horrobin DF. Omega-6 essential fatty acids. 1990; New York: Alan R. Liss. 21–53.
  • Lee SK, Jung OL, Ji HK, Nami K, Ga YY, Ji WM, etal. Coenzyme Q10 increases the fatty acid oxidation through AMPK-mediated PPARα induction in 3T3-L1 preadipocytes. Cell Signal. 2012; 24: 2329–36. [PubMed Abstract].
  • Makinde AO, Gamble J, Lopaschuk GD. Upregulation of 5′-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rate. Circ Res. 1997; 80: 482–9. [PubMed Abstract].
  • [PubMed CentralFull Text] Ai H, Ihlemann J, Hellsten Y, Lauritzen HP, Hardie DG, Galbo H, et al. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle. Am J Physiol Endocrinol Metab 2002; 282: 1291–300..
  • Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, etal. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA. 2002; 99: 15983–7. [PubMed Abstract] [PubMed CentralFull Text].
  • Henin N, Vincent MF, Gruber HE, Van den Berghe G. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J. 1995; 9: 541–6. [PubMed Abstract].
  • Virmani A, Gaetani F, Binienda Z. Effects of metabolic modifiers such as carnitines, coenzyme Q10, and PUFAs against different forms of neurotoxic insults: metabolic inhibitors, MPTP, and methamphetamine. Ann N Y Acad Sci. 2005; 1053: 183–91. [PubMed Abstract].