585
Views
0
CrossRef citations to date
0
Altmetric
The growing global problem of antibiotic resistance

Phylogenetic analysis of pbp genes in treponemes

, PhD & , PhD
Article: 18636 | Received 27 Apr 2012, Accepted 04 Dec 2012, Published online: 15 Jan 2013

References

  • Charon NW, Goldstein SF. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet. 2002; 36: 47–73.
  • Antal GM, Lukehart SA, Meheus AZ. The endemic treponematoses. Microbes Infect. 2002; 4: 83–94.
  • Nordhoff M, Taras D, Macha M, Tedin K, Busse HJ, Wieler LH. Treponema berlinense sp. nov. and Treponema porcinum sp. nov., novel spirochaetes isolated from porcine faeces. Int J Syst Evol Microbiol. 2005; 55: 1675–80.
  • Berlanga M, Paster BJ, Guerrero R. Coevolution of symbiotic spirochete diversity in lower termites. Int Microbiol. 2007; 10: 133–9.
  • Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004; 101: 11030–5.
  • Levy D, Yoshida R, Pachter L. Beyond pairwise distances: neighbor-joining with phylogenetic diversity estimates. Mol Biol Evol. 2006; 23: 491–8.
  • de Melo FL, de Mello JC, Fraga AM, Nunes K, Eggers S. Syphilis at the crossroad of phylogenetics and paleopathology. PLoS Negl Trop Dis. 2010; 4: e575.
  • Lilburn TG, Schmidt TM, Breznak JA. Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol. 1999; 1: 331–45.
  • Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA. Nitrogen fixation by symbiotic and free-living spirochetes. Science. 2001; 292: 2495–8.
  • Lo N, Evans TA. Phylogenetic diversity of the intracellular symbiont Wolbachia in termites. Mol Phylogenet Evol. 2007; 44: 461–6.
  • Lafond RE, Lukehart SA. Biological basis for syphilis. Clin Microbiol Rev. 2006; 19: 29–49.
  • (CDC) CfDCaP. Azithromycin treatment failures in syphilis infections—San Francisco, California, 2002–2003. MMWR Morb Mortal Wkly Rep. 2004; 53: 197–8.
  • Lukehart SA, Godornes C, Molini BJ, Sonnett P, Hopkins S, Mulcahy F, et al.. Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med. 2004; 351: 154–8.
  • Pandori MW, Gordones C, Castro L, Engelman J, Siedner M, Lukehart S, et al.. Detection of azithromycin resistance in Treponema pallidum by real-time PCR. Antimicrob Agents Chemother. 2007; 51: 3425–30.
  • Katz KA, Klausner JD. Azithromycin resistance in Treponema pallidum. Curr Opin Infect Dis. 2008; 21: 83–91.
  • Mabey D. Azithromycin resistance in Treponema pallidum. Sex Transm Dis. 2009; 36: 777–8.
  • Van Damme K, Behets F, Ravelomanana N, Godornes C, Khan M, Randrianasolo B, et al.. Evaluation of azithromycin resistance in Treponema pallidum specimens from Madagascar. Sex Transm Dis. 2009; 36: 775–6.
  • Zhou P, Li K, Lu H, Qian Y, Gu X, Gong W, et al.. Azithromycin treatment failure among primary and secondary syphilis patients in Shanghai. Sex Transm Dis. 2010; 37: 726–9.
  • Ison CA. Antimicrobial resistance in sexually transmitted infections in the developed world: implications for rational treatment. Curr Opin Infect Dis. 2012; 25: 73–8.
  • Roberts MC, Chung WO, Roe DE. Characterization of tetracycline and erythromycin resistance determinants in Treponema denticola. Antimicrob Agents Chemother. 1996; 40: 1690–4.
  • Simonson LG, Goodman CH, Bial JJ, Morton HE. Quantitative relationship of Treponema denticola to severity of periodontal disease. Infect Immun. 1988; 56: 726–8.
  • Fenno JC. Treponema denticola interactions with host proteins. J Oral Microbiol. 2012; 4: 9929.
  • Tompkins DS, Millar MR, Heritage J, West AP. beta-Lactamase production by intestinal spirochaetes. J Gen Microbiol. 1987; 133: 761–5.
  • Cha JY, Ishiwata A, Mobashery S. A novel beta-lactamase activity from a penicillin-binding protein of Treponema pallidum and why syphilis is still treatable with penicillin. J Biol Chem. 2004; 279: 14917–21.
  • Rosenthal AZ, Matson EG, Eldar A, Leadbetter JR. RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. ISME J. 2011; 5: 1133–42.
  • Seshadri R, Myers GS, Tettelin H, Eisen JA, Heidelberg JF, Dodson RJ, et al.. Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci U S A. 2004; 101: 5646–51.
  • Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, et al.. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science. 1998; 281: 375–88.
  • Matejková P, Strouhal M, Smajs D, Norris SJ, Palzkill T, Petrosino JF, et al.. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol. 2008; 8: 76.
  • Šmajs D, Zobaníková M, Strouhal M, Čejková D, Dugan-Rocha S, Pospíšilová P, et al.. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay. PLoS One. 2011; 6: 20415.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28: 2731–9.
  • Nei M, Kumar S. Molecular evolution and phylogenetics. Oxford University Press. New york, 2000; 333.
  • Trindade A, Chadha T. Phylogenetic Analysis of Genetic Diversity of Hemolysins in Leptospira. J Proteomics Bioinform. 2012; 5(7): 152–4.
  • Houston S, Hof R, Francescutti T, Hawkes A, Boulanger MJ, Cameron CE. Bifunctional role of the Treponema pallidum extracellular matrix-binding adhesin Tp0751. Infect Immun. 2011; 79: 1386–98.
  • Zhang W, Fisher JF, Mobashery S. The bifunctional enzymes of antibiotic resistance. Curr Opin Microbiol. 2009; 12: 505–511.