7,892
Views
127
CrossRef citations to date
0
Altmetric
Review Articles

Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics

, MSc, PhD
Article: 28564 | Received 18 May 2015, Accepted 05 Aug 2015, Published online: 08 Sep 2015

References

  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010; 74: 417–33.
  • Wright GD. Q&A: antibiotic resistance: where does it come from and what can we do about it?. BMC Biol. 2010; 8: 123.
  • Davies J. The garden of antimicrobial delights. F1000 Biol Rep. 2010; 2: 26. [PubMed Abstract] [PubMed CentralFull Text].
  • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004; 10(Suppl): S122–9.
  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010; 8: 251–9.
  • Laxminarayan R, Bhutta Z, Duse A, Jenkins P, O'Brien T, Okeke IN, etal., Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, etal. Drug resistance. Disease control priorities in developing countries. 2nd ed. 2006; Washington, DC: World Bank. 1031–51.
  • Planta MB. The role of poverty in antimicrobial resistance. J Am Board Fam Med. 2007; 20: 533–9.
  • Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, etal. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis. 2013; 13: 155–65.
  • Blomberg B. Antibiotikaresistens i utviklingsland. Tidsskr Nor Laegeforen. 2008; 128: 2462–6. [PubMed Abstract].
  • Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, etal. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother. 2004; 53: 28–52.
  • Kümmerer K. Resistance in the environment. J Antimicrob Chemother. 2004; 54: 311–20.
  • Hawkey PM. The growing burden of antimicrobial resistance. J Antimicrob Chemother. 2008; 62(Suppl 1): i1–9.
  • Appelbaum PC. 2012 and beyond: potential for the start of a second pre-antibiotic era?. J Antimicrob Chemother. 2012; 67: 2062–8.
  • World Health Organization. Antimicrobial resistance: global report on surveillance 2014. 2014; Geneva: WHO.
  • Martínez JL. Antibiotics and antibiotic resistance genes in natural environments. Science. 2008; 321: 365–7.
  • Martínez JL. Natural antibiotic resistance and contamination by antibiotic resistance determinants: the two ages in the evolution of resistance to antimicrobials. Front Microbiol. 2012; 3: 1–3.
  • Wright GD. Antibiotic resistance in the environment: a link to the clinic?. Curr Opin Microbiol. 2010; 13: 589–94.
  • Martínez JL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci. 2009; 276: 2521–30.
  • Davies J. Are antibiotics naturally antibiotics?. J Ind Microbiol Biotechnol. 2006; 33: 496–9.
  • Aminov RI. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol. 2009; 11: 2970–88.
  • Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 2013; 4: 47.
  • Bernier SP, Surette MG. Concentration-dependent activity of antibiotics in natural environments. Front Microbiol. 2013; 4: 20.
  • Andersson DI, Hughes D. Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist Updat. 2012; 15: 162–72.
  • D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, etal. Antibiotic resistance is ancient. Nature. 2011; 477: 457–61.
  • Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, etal. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One. 2012; 7: e34953.
  • Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev. 2010; 74: 434–52.
  • Bates S, Cashmore AM, Wilkins BM. IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae: involvement of the tra2 mating system. J Bacteriol. 1998; 180: 6538–43. [PubMed Abstract] [PubMed CentralFull Text].
  • Davison J. Genetic exchange between bacteria in the environment. Plasmid. 1999; 42: 73–91.
  • Johnsborg O, Håvarstein LS. Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumonia. FEMS Microbiol Rev. 2009; 33: 627–42.
  • Mao D, Luo Y, Mathieu J, Wang Q, Feng L, Mu Q, etal. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environ Sci Technol. 2014; 48: 71–8.
  • Muniesa M, Colomer-Lluch M, Jofre J. Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations?. Mob Genet Elements. 2013; 3: e25847.
  • Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW, etal. Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol. 1998; 64: 575–80. [PubMed Abstract] [PubMed CentralFull Text].
  • Jiang SC, Paul JH. Gene transfer by transduction in the marine environment. Appl Environ Microbiol. 1998; 64: 2780–7. [PubMed Abstract] [PubMed CentralFull Text].
  • Brüssow H, Hendrix RW. Phage genomics: small is beautiful. Cell. 2002; 108: 13–6.
  • Rolain JM, Canton R, Cornaglia G. Emergence of antibiotic resistance: need for a new paradigm. Clin Microbiol Infect. 2012; 18: 615–6.
  • Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One. 2011; 6: e17549.
  • Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol. 2006; 4: 608–20.
  • Cambray G, Guerout AM, Mazel D. Integrons. Annu Rev Genet. 2010; 44: 141–66.
  • Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, etal. The SOS response controls integron recombination. Science. 2009; 324: 1034.
  • Baharoglu Z, Bikard D, Mazel D. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet. 2010; 6: e1001165.
  • Domingues S, da Silva GJ, Nielsen KM. Integrons: vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elements. 2012; 2: 211–23.
  • Domingues S, Harms K, Fricke WF, Johnsen PJ, da Silva GJ, Nielsen KM. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. PLoS Pathog. 2012; 8: e1002837.
  • Michael CA, Gillings MR, Holmes AJ, Hughes L, Andrew NR, Holley MP, etal. Mobile gene cassettes: a fundamental resource for bacterial evolution. Am Nat. 2004; 164: 1–12.
  • Koenig JE, Boucher Y, Charlebois RL, Nesbø C, Zhaxybayeva O, Bapteste E, etal. Integron-associated gene cassettes in Halifax Harbour: assessment of a mobile gene pool in marine sediments. Environ Microbiol. 2008; 10: 1024–38.
  • Wright MS, Baker-Austin C, Lindell AH, Stepanauskas R, Stokes HW, McArthur JV. Influence of industrial contamination on mobile genetic elements: class 1 integron abundance and gene cassette structure in aquatic bacterial communities. ISME J. 2008; 2: 417–28.
  • Gaze WH, Zhang L, Abdouslam NA, Hawkey PM, Calvo-Bado L, Royle J, etal. Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. ISME J. 2011; 5: 1253–61.
  • Khan GA, Berglund B, Khan KM, Lindgren PE, Fick J. Occurrence and abundance of antibiotics and resistance genes in rivers, canal and near drug formulation facilities – a study in Pakistan. PLoS One. 2013; 8: e62712.
  • Huovinen P, Sundström L, Swedberg G, Sköld O. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother. 1995; 39: 279–89.
  • Sköld O. Resistance to trimethoprim and sulfonamides. Vet Res. 2001; 32: 261–73.
  • Pei R, Kim SC, Carlson KH, Pruden A. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 2006; 40: 2427–35.
  • Wu S, Dalgaard A, Hammerum AM, Porsbo LJ, Jensen LB. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human. Acta Vet Scand. 2010; 52: 47.
  • Stoll C, Sidhu JP, Tiehm A, Toze S. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environ Sci Technol. 2012; 46: 9716–26.
  • Suzuki S, Ogo M, Miller TW, Shimizu A, Takada H, Siringan MA. Who possesses drug resistance genes in aquatic environment?: Sulfamethoxazole (SMX) resistance genes among the bacterial community in water environment of Metro-Manila, Philippines. Front Microbiol. 2013; 4: 102.
  • Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci Tot Environ. 2012; 421–422: 173–83.
  • Berglund B, Fick J, Lindgren PE. Urban wastewater effluent increases antibiotic resistance gene concentrations in a receiving northern European river. Environ Toxicol Chem. 2015; 34: 192–6.
  • Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007; 128: 1037–50.
  • Mukherjee S, Chakraborty R. Incidence of class 1 integrons in multiple antibiotic-resistant Gram-negative copiotrophic bacteria from the River Torsa in India. Res Microbiol. 2006; 157: 220–6.
  • Henriques IS, Fonseca F, Alves A, Saavedra MJ, Correia A. Occurrence and diversity of integrons and beta-lactamase genes among ampicillin-resistant isolates from estuarine waters. Res Microbiol. 2006; 157: 938–47.
  • Moura A, Henriques I, Ribeiro R, Correia A. Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. J Antimicrob Chemother. 2007; 60: 1243–50.
  • Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006; 6: 629–40.
  • Bönemann G, Stiens M, Pühler A, Schlüter A. Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant. Antimicrob Agents Chemother. 2006; 50: 3075–80.
  • Cattoir V, Poirel L, Aubert C, Soussy CJ, Nordmann P. Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas spp. Emerg Infect Dis. 2008; 14: 231–7.
  • Picão RC, Poirel L, Demarta A, Silva CS, Corvaglia AR, Petrini O, etal. Plasmid-mediated quinolone resistance in Aeromonas allosaccharophila recovered from a Swiss lake. J Antimicrob Chemother. 2008; 62: 948–50.
  • Ozgumus OB, Sandalli C, Sevim A, Celik-Sevim E, Sivri N. Class 1 and class 2 integrons and plasmid-mediated antibiotic resistance in coliforms isolated from ten rivers in northern Turkey. J Microbiol. 2009; 47: 19–27.
  • Forcella C, Pellegrini C, Celenza G, Segatore B, Calabrese R, Tavio MM, etal. QnrB9 in association with TEM-116 extended-spectrum beta-lactamase in Citrobacter freundii isolated from sewage effluent: first report from Italy. J Chemother. 2010; 22: 243–5.
  • Dalkmann P, Broszat M, Siebe C, Willaschek E, Sakinc T, Huebner J, etal. Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater from zero to 100 years in central Mexico. PLoS One. 2012; 7: e45397.
  • Cummings DE, Archer KF, Arriola DJ, Baker PA, Faucett KG, Laroya JB, etal. Broad dissemination of plasmid-mediated quinolone resistance genes in sediments of two urban coastal wetlands. Environ Sci Technol. 2011; 45: 447–54.
  • Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett. 2005; 245: 195–203.
  • Auerbach EA, Seyfried EE, McMahon KD. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res. 2007; 41: 1143–51.
  • Knapp CW, Dolfing J, Ehlert PA, Graham DW. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol. 2010; 44: 580–7.
  • Zhang XX, Zhang T. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations. Environ Sci Technol. 2011; 45: 2598–604.
  • Courvalin P. Vancomycin resistance in Gram-positive cocci. Clin Infect Dis. 2006; 42(Suppl 1): S25–34.
  • Caplin JL, Hanlon GW, Taylor HD. Presence of vancomycin and ampicillin-resistant Enterococcus faecium of epidemic clonal complex-17 in wastewaters from the south coast of England. Environ Microbiol. 2008; 10: 885–92.
  • Iversen A, Kühn I, Franklin A, Möllby R. High prevalence of vancomycin-resistant enterococci in Swedish sewage. Appl Environ Microbiol. 2002; 68: 2838–42.
  • Messi P, Guerrieri E, de Niederhäusern S, Sabia C, Bondi M. Vancomycin-resistant enterococci (VRE) in meat and environmental samples. Int J Food Microbiol. 2006; 107: 218–22.
  • Roberts MC, Soge OO, Giardino MA, Mazengia E, Ma G, Meschke JS. Vancomycin-resistant Enterococcus spp. in marine environments from the West Coast of the USA. J Appl Microbiol. 2009; 107: 300–7.
  • Araújo C, Torres C, Silva N, Carneiro C, Gonçalves A, Radhouani H, etal. Vancomycin-resistant enterococci from Portuguese wastewater treatment plants. J Basic Microbiol. 2010; 50: 605–9.
  • Schwartz T, Kohnen W, Jansen B, Obst U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol. 2003; 43: 325–35.
  • Borgen K, Simonsen GS, Sundsfjord A, Wasteson Y, Olsvik O, Kruse H. Continuing high prevalence of VanA-type vancomycin-resistant enterococci on Norwegian poultry farms three years after avoparcin was banned. J Appl Microbiol. 2000; 89: 478–85.
  • Nilsson O, Greko C, Bengtsson B, Englund S. Genetic diversity among VRE isolates from Swedish broilers with the coincidental finding of transferrable decreased susceptibility to narasin. J Appl Microbiol. 2012; 112: 716–22.
  • Roberts MC. Update on macrolide–lincosamide–streptogramin, ketolide and oxazolidinone resistance genes. FEMS Microbiol Lett. 2008; 282: 147–159.
  • Roberts AP, Mullany P. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 2009; 17: 251–8.
  • Duarte RS, Miranda OP, Bellei BC, Brito MA, Teixeira LM. Phenotypic and molecular characteristics of Streptococcus agalactiae isolates recovered from milk of dairy cows in Brazil. J Clin Microbiol. 2004; 42: 4214–22.
  • Hayes JR, Wagner DD, English LL, Carr LE, Joseph SW. Distribution of streptogramin resistance determinants among Enterococcus faecium from a poultry production environment of the USA. J Antimicrob Chemother. 2005; 55: 123–6.
  • Novais C, Coque TM, Costa MJ, Sousa JC, Baquero F, Peixe LV. High occurrence and persistence of antibiotic-resistant enterococci in poultry food samples in Portugal. J Antimicrob Chemother. 2005; 56: 1139–43.
  • Chen J, Yu Z, Michel FC Jr, Wittum T, Morrison M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides–lincosamides–streptogramin B in livestock manure and manure management systems. Appl Environ Microbiol. 2007; 73: 4407–16.
  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE. Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere. 1998; 36: 357–93.
  • Segura PA, François M, Gagnon C, Sauvé S. Review of the occurrence of anti-infectives in contaminated wastewaters and natural drinking waters. Environ Health Perspect. 2009; 117: 675–84.
  • Hughes SR, Kay P, Brown LE. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol. 2013; 47: 661–77.
  • Scholz M, Lee BH. Constructed wetlands: a review. Int J Environ Stud. 2005; 62: 421–47.
  • Baquero F, Martínez JL, Cantón R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol. 2008; 19: 260–5.
  • Gros M, Petrović M, Barceló D. Multi-residue analytical methods using LC-tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: a review. Anal Bioanal Chem. 2006; 386: 941–52.
  • Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, etal. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011; 7: e1002158.
  • Barr V, Barr K, Millar MR, Lacey RW. Beta-lactam antibiotics increase the frequency of plasmid transfer in Staphylococcus aureus. J Antimicrob Chemother. 1986; 17: 409–13.
  • Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004; 427: 72–4.
  • Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penadés JR. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol. 2005; 56: 836–44.
  • Li D, Yang M, Hu J, Ren L, Zhang Y, Li K. Determination and fate of oxytetracycline related compounds in oxytetracycline production wastewater and the receiving river. Environ Toxicol Chem. 2008; 27: 80–6.
  • Li D, Yu T, Zhang Y, Yang M, Li Z, Liu M, etal. Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl Environ Microbiol. 2010; 76: 3444–51.
  • Larsson DG, de Pedro C, Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater. 2007; 148: 751–5.
  • Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, etal. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One. 2011; 6: e17038.
  • Berglund B, Khan GA, Weisner SE, Ehde PM, Fick J, Lindgren PE. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. Sci Total Environ. 2014; 476–477: 29–37.
  • Berglund B, Khan GA, Lindberg R, Fick J, Lindgren PE. Abundance and dynamics of antibiotic resistance genes and integrons in lake sediment microcosms. PLoS One. 2014; 9: e108151.