497
Views
3
CrossRef citations to date
0
Altmetric
Original Research Articles

A proof-of-concept model for the identification of the key events in the infection process with specific reference to Pseudomonas aeruginosa in corneal infections

, DVM, MBA, PhD, , BSc, MSc, PhD & , MPhil, PhD
Article: 28750 | Received 03 Jun 2015, Accepted 16 Oct 2015, Published online: 05 Nov 2015

References

  • Sassi F. Calculating QALYs, comparing QALY and DALY calculations. Health Policy Plan. 2006; 21: 402–8.
  • Last JM. A dictionary of epidemiology. 2001; New York: Oxford University Press. 196. 4th ed.
  • Julien E, Boobis RA, Olin SS, The ILSI Research Foundation Threshold Working Group . The Key Events Dose–Response Framework: a cross-disciplinary mode-of-action based approach to examining dose-response and thresholds. Crit Rev Food Sci Nutr. 2009; 49: 682–9. [PubMed Abstract] [PubMed CentralFull Text].
  • Buchanan LR, Havelaar HA, Smith AM, Whiting CR, Julien E. The Key Events Dose–Response Framework: its potential for application to foodborne pathogenic microorganisms. Crit Rev Food Sci Nutr. 2009; 49: 718–28.
  • Stapleton F, Keah L, Edwards K, Naduvilath T, Dart JK, Brian G, etal. The incidence of contact lens related microbial keratitis in Australia. Ophthalmology. 2008; 115: 1665–72.
  • Haas CN, Rode JB, Gerba CP. Quantitative microbial risk assessment. 2014; 2nd ed, New Jersey: John Wiley & Sons. 63–89.
  • Haas CN. Microbial dose–response modeling: past, present & future. Environ Sci Technol. 2015; 49: 1245–59. doi: http://dx.doi.org/10.1021/es504422q [PubMed Abstract].
  • Edwards K, Keay L, Naduvilath T, Stapleton F. A population survey of the penetrance of contact lens wear in Australia: rationale, methodology and results. Ophthalmol Epidemiol. 2009; 16: 275–80.
  • Dutta D, Cole N, Willcox MD. Factors influencing bacterial adhesion to contact lenses. Mol Vis. 2012; 18: 14–21.
  • Stapleton F, Carnt N. Contact-lens related microbial keratitis: how have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye. 2012; 26: 185–93.
  • Vijay AK, Willcox M, Zhu H, Stapleton F. Contact lens storage case hygiene practice and storage case contamination. Eye Contact Lens. 2015; 41: 91–7.
  • Carnt N, Willcox MDP, Keay L, Flanagan J, Stapleton F. Pathogenesis of contact-lens associated microbial keratitis. Optom Vis Sci. 2010; 87: 612–14.
  • Hazlett LD, McClellan SM, Hume SB, Dajcs JJ, O'Callaghan RJ, Willcox MD. Extended contact lens usage induces Langerhans cell migration into cornea. Exp Eye Res. 1999; 69: 575–7.
  • Hazlett LD. Pathogenic mechanisms of P. aeruginosa keratitis: a review of the role of T cells, Langerhans cells, PMN, and cytokines. DNA Cell Biol. 2002; 21: 383–90.
  • Lakkis C, Fleiszig SMJ. Resistance of Pseudomonas aeruginosa isolates to hydrogel contact lens disinfection correlates with cytotoxic activity. J Clin Microbiol. 2001; 39: 1477–86.
  • Bruinsma GM, Rustema-Abbing M, van der Mei HC, Lakkis C, Busscher HJ. Resistance to a polyquaternium-1 care solution and isoelectric points of Pseudomonas aeruginosa strains. J Antimicrob Chemother. 2006; 57: 764–6.
  • Bruinsma GM, van der Mei HC, Busscher HJ. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials. 2001; 22: 3217–24.
  • Henriques M, Sousa C, Lira M, Elisabete M, Oliveira R, Oliveira R, etal. Adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis to silicone-hydrogel contact lenses. Optom Vis Sci. 2005; 82: 446–50.
  • Williams TJ, Schneider RP, Willcox MD. The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria. Curr Eye Res. 2003; 27: 227–35.
  • George M, Adhearn D, Pierce G, Gabriel M. Interactions of Pseudomonas aeruginosa and Staphylococcus epidermidis in adhesion to a hydrogel. Eye Contact Lens. 2003; 29: S105–9.
  • Stapleton FDJ, Matheson M, Woodward E. Bacterial adherence and glycocalyx formation on unworn hydrogel lenses. J Br Contact Lens Assoc. 1993; 16: 113–16.
  • Saraswathi P, Beuerman RW. Corneal biofilms: from planktonic to microcolony formation in an experimental keratitis infection with Pseudomonas aeruginosa. Ocul Surf. 2015; 13: 331–45. doi: http://dx.doi.org/10.1016/j.tos.2015.07.001 [PubMed Abstract].
  • Randler C, Matthes R, McBain AJ, Giese B, Fraunholz M, Sietmann R, etal. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses. BMC Microbiol. 2010; 10: 282. doi: http://dx.doi.org/10.1186/1471-2180-10-282 [PubMed Abstract] [PubMed CentralFull Text].
  • Miller MJ, Ahearn DG. Adherence of Pseudomonas aeruginosa to hydrophilic contact lenses and other substrata. J Clin Microbiol. 1987; 25: 1392–7. [PubMed Abstract] [PubMed CentralFull Text].
  • Shankar J, Sueke H, Wiehlmann L, Horsburgh MJ, Tuft S, Neal TJ, etal. Genotypic analysis of UK keratitis-associated Pseudomonas aeruginosa suggests adaptation to environmental water as a key component in the development of eye infections. FEMS Microbiol Lett. 2012; 334: 79–86.
  • Hornef MW, Wick MJ, Rhen M, Normark S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol. 2002; 3: 1033–40.
  • Yeung AT, Parayno A, Hancock RE. Mucin promotes rapid surface motility in Pseudomonas aeruginosa. mBio. 2012; 3 pii: e00073–12. doi: http://dx.doi.org/10.1128/mBio.00073-12.
  • Vallet I, Diggle SP, Stacey RE, Camara M, Ventre I, Lory S, etal. Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol. 2004; 186: 2880–90.
  • Sriramulu DD, Lünsdorf H, Lam JS, Römling U. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol. 2005; 54: 667–76.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124: 783–801.
  • Kawasaki T, Kawai T. Toll-like receptor signalling pathways. Front Microbiol. 2014; 5: 461.
  • Lorenz DA, Chemotti DC, Vandal K, Tessier PA. Toll-like receptor 2 represses nonpilus adhesin-induced signalling in acute infections with the Pseudomonas aeruginosa pilA mutant. Infect Immun. 2004; 72: 4561–9.
  • Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol. 2007; 297: 277–95.
  • Feuillet V, Medjane S, Mondor, Demaria I, Pagni I, Galán JE, etal. Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria, Proc Nat Acad Sci USA. 2006; 103: 12487–92. [PubMed Abstract].
  • Knop E, Knop N. Niederkorn JY, Kaplan HJ. Anatomy and immunology of the ocular surface. Immune response and the eye. Chemical immunology and allergy . 2007; 92; Basel: Karger. 36–49.
  • Ni M, Evans DJ, Hawgood S, Anders EM, Sack RA, Fleiszig SM. Surfactant protein D is present in human tear fluid and the cornea and inhibits epithelial cell invasion by Pseudomonas aeruginosa. Infect Immun. 2005; 73: 2147–56.
  • Pearlman E, Sun Y, Roy S, Karmakar M, Hise AG, Szczothaa-Flynn L. Host defense at the ocular surface. Int Rev Immunol. 2013; 32: 4–18.
  • McAuley JL, Linden SK, Png CW, King RM, Pennington HL, Gendler SJ, etal. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest. 2007; 117: 2313–24.
  • Gordon GM, Moradshabi N, Jeong S, Lane C, Fini ME. A novel mechanism of increased infections in contact lens wearers. Invest Ophthalmol Vis Sci. 2011; 52: 9188–94.
  • Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microb Infect. 2000; 2: 1051–60.
  • Lomholt JA, Poulsen K, Kilian M. Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect Immun. 2001; 69: 6284–95.
  • Stewart RMK, Wiehlmann L, Ashelford KE, Preston SJ, Frimmersdorf E, Campbell BJ, etal. Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J Clin Microbiol. 2011; 49: 993–1003.
  • Choy HM, Stapleton F, Willcox PDM, Zhu H. Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens- and non-contact lens-related keratitis. J Med Microbiol. 2008; 57: 1539–46.
  • Bleves S, Viarre V, Salacha R, Michel GPF, Filloux A, Voulhoux R. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int J Med Microbiol. 2010; 300: 534–43.
  • Ramirez JC, Fleiszig SM, Sullivan AB, Tam C, Borazjani R, Evans DJ. Traversal of multilayered corneal epithelia by cytotoxic Pseudomonas aeruginosa requires the phospholiase domain of exoU. Invest Ophthalmol Vis Sci. 2012; 53: 448–53.
  • Lomholt JA, Kilian M. Degradation of uniquely glycosylated secretory immunoglobulin A in tears from patients with Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci. 2008; 49: 4939–44.
  • Fleiszig SM, Evans DJ. Pathogenesis of contact lens-associated microbial keratitis. Optom Vis Sci. 2010; 87: 225–32.
  • Alarcon I, Kwan L, Yu C, Evans DJ, Fleiszig SM. Role of corneal epithelial basement membrane in ocular defense against Pseudomonas aeruginosa. Infect Immun. 2009; 77: 3264–71.
  • Wu DC, Chan WW, Metelitsa AI, Fiorillo L, Lin AN. Pseudomonas skin infection: clinical features, epidemiology, and management. Am J Clin Dermatol. 2011; 12: 157–69.
  • Moreau JM, Conerly LL, Hume EB, Dajcs JJ, Girgis DO, Cannon BM. Effectiveness of mupirocin and polymyxin B in experimental Staphylococcus aureus, Pseudomonas aeruginosa, and Serratia marcescens keratitis. Cornea. 2002; 21: 807–11.
  • Teunis PFM, Havelaar AH. The beta Poisson dose–response model is not a single-hit model. Risk Anal. 2000; 20: 513–20.
  • Gale P, Hill A, Kelly L, Bassett J, McClure P, Le Marc Y, Soumpasis I. Applications of omics approaches to the development of microbiological risk assessment using RNA virus dose–response models as a case study. J Appl Microbiol. 2014; 117: 1537–48.
  • Tam C, Mun JJ, Evans DJ, Fleizig SMJ. The impact of inoculation parameters on the pathogenesis of contact lens-related infectious keratitis. Invest Opthalmol Vis Sci. 2010; 51: 3100–6.