2,432
Views
26
CrossRef citations to date
0
Altmetric
Review Articles

Anthropogenic antibiotic resistance genes mobilization to the polar regions

, PhD & , PhD
Article: 32112 | Received 02 May 2016, Accepted 24 Oct 2016, Published online: 12 Dec 2016

References

  • Grimaldi W, Seddon PJ, Lyver PO'B, Nakagawa S, Tompkins DM. Infectious diseases of Antarctic penguins: current status and future threats. Polar Biol. 2015; 38: 591–606.
  • Hubalek Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J Wildlife Dis. 2004; 40: 639–59.
  • Abulreesh H, Goulder R, Scott GW. Wild birds and human pathogens in the context of ringing and migration. Br Trust Ornithol. 2007; 23: 193–200.
  • Griekspoor P, Olsen B, Waldenstrom J. Campylobacter jejuni in penguins, Antarctica. Emerg Infect Dis. 2009; 15: 847–8.
  • Broman T, Bergström S, On SLW, Palmgren H, McCafferty DJ, Sellin M, etal. Isolation and characterization of Campylobacter jejuni subsp. jejuni from macaroni penguins (Eudyptes chrysolophus) in the subantarctic region. Appl Environ Microbiol. 2000; 66: 449–52.
  • Sjölund-Karlsson M, Bonnedahl J, Hernandez J, Bengtsson S, Cederbrant G, Pinhassi J, etal. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis. 2008; 14: 70–2.
  • Olsen B, Bergström S, McCafferty DJ, Sellin M, Wiström G. Salmonella enteritidis in Antarctica: zoonosis in man or humanosis in penguins?. Lancet. 1996; 348: 1319–20.
  • Palmgren H, McCafferty D, Aspán A, Broman T, Sellin M, Wollin R, etal. Salmonella in sub-Antarctica: low heterogeneity in Salmonella serotypes in South Georgian seals and birds. Epidemiol Infect. 2000; 125: 257–62.
  • Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett. 2007; 271: 147–61.
  • Calva JJ, Sifuentes-Osornio J, Ceron C. Antimicrobial resistance in fecal flora: longitudinal community-based surveillance of children from urban Mexico. Antimicrob Agents Chemother. 1996; 40: 1699–702.
  • Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Med. 2006; 119(6 Suppl 1): S20–8. discussion S62–70.
  • Guillemot D, Courvalin P. Better control of antibiotic resistance. Clin Infect Dis. 2001; 33: 542–7.
  • Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, etal. Waterborne Zoonoses: Identification, Causes, and Control. 2003; London: World Health Organisation (WHO), IWA Publishing;. 91–150.
  • Morse SS. Factors in the emergence of infectious diseases. Emerg Infect Dis. 1995; 1: 7–15.
  • Livermore DM. Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis. 2003; 36(Suppl 1): S11–23.
  • Tollefson L, Angulo FJ, Fedorka-Cray PJ. National surveillance for antibiotic resistance in zoonotic enteric pathogens. Vet Clin North Am Food Anim Prac. 1998; 14: 141–50.
  • Gilmore MS, Hoch JA. Antibiotic resistance: a vancomycin surprise. Nature. 1999; 399: 524–7.
  • Whitman RL, Shively DA, Pawlik H, Nevers MB, Byappanahalli MN. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl Environ Microbiol. 2003; 69: 4714–19.
  • Threlfall EJ. Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol Rev. 2002; 26: 141–8.
  • Literak I, Dolejska M, Janoszowska D, Hrusakova J, Meissner W, Rzyska H, etal. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland. Appl Environ Microbiol. 2010; 76: 8126–34.
  • Bonnedahl J, Drobni P, Johansson A, Hernandez J, Melhus Å, Stedt J, etal. Characterization, and comparison, of human clinical and black-headed gull (Larus ridibundus) extended-spectrum beta-lactamase-producing bacterial isolates from Kalmar, on the southeast coast of Sweden. J Antimicrob Chemother. 2010; 65: 1939–44.
  • Stedt J, Bonnedahl J, Hernandez J, McMahon BJ, Hasan B, Olsen B, etal. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries. Infect Ecol Epidemiol. 2014; 21565: doi: http://dx.doi.org/10.3402/iee.v4.21565.
  • Guenther S, Aschenbrenner K, Stamm I, Bethe A, Semmler T, Stubbe A, etal. Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS One. 2012; 7: e53039.
  • Brisse S, Grimont F, Grimont PD. Dworkin M, etal. The genus Klebsiella . The Prokaryotes. 2006; New York: Springer. 159–96.
  • Neuberger A, Oren I, Sprecher H. Clinical impact of a PCR assay for rapid identification of Klebsiella pneumoniae in blood cultures. J Clin Microbiol. 2008; 46: 377–9.
  • Brisse S, Duijkeren E. Identification and antimicrobial susceptibility of 100 Klebsiella animal clinical isolates. Vet Microbiol. 2005; 105: 307–12.
  • Bagattini M, Crivaro V, Di Popolo A, Gentile F, Scarcella A, Triassi M, etal. Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. J Antimicrob Chemother. 2006; 57: 979–82.
  • D'Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, etal. Antibiotic resistance is ancient. Nature. 2011; 477: 457–61.
  • Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, etal. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One. 2012; 7: e34953.
  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010; 74: 417–33.
  • da Costa PM, Loureiro L, Matos AJ. Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. Int J Environ Res Public Health. 2013; 10: 278–94.
  • Wooldridge M. Evidence for the circulation of antimicrobial-resistant strains and genes in nature and especially between humans and animals. Rev Sci Tech. 2012; 31: 231–47.
  • Trott D. Beta-lactam resistance in gram-negative pathogens isolated from animals. Curr Pharm Des. 2013; 19: 239–49.
  • Frère J-M. Beta-lactamases and bacterial resistance to antibiotics. Molecular Microbiology. 1995. 16(3): 385–395.
  • Philippon A, Labia R, Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1989; 33: 1131–6.
  • Canton R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opinion Microbiol. 2006; 9: 466–75.
  • Govinden U, Mocktar C, Moodley P, Sturm AW, Essack SY. Geographical evolution of the CTX-M-lactamase – an update. Afr J Biotechnol. 2007; 6: 831–9.
  • Gupta V. An update on newer beta-lactamases. Indian J Med Res. 2007; 126: 417–27.
  • Coque TM, Novais Â, Carattoli A, Poirel L, Pitout J, Peixe L, etal. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum beta-lactamase CTX-M-15. Emerg Infect Dis. 2008; 14: 195–200.
  • Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005; 18: 657–86.
  • Woodford N. Successful, multiresistant bacterial clones. J Antimicrob Chemother. 2008; 61: 233–4.
  • Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol. 2003; 69: 6610–19.
  • Upton M, Pennington T, Haston W, Forbes KJ. Detection of human commensals in the area around an Antarctic research station. Antarct Sci. 1997; 9: 156–61.
  • Hernández J, Stedt J, Bonnedahl J, Molin Y, Drobni M, Calisto-Ulloa N, etal. Human-associated extended-spectrum beta-lactamase in the Antarctic. Appl Environ Microbiol. 2012; 78: 2056–8.
  • Nowlan L. Arctic Legal Regime for Environmental Protection, in IUCN – The World Conservation Union, IUCN Environmental Policy and Law Paper No. 44. 2001; Gland, Switerland: IUCN. vii+70 pp.
  • Hagen JOJ, Marchant R, Nelson H, Prowse F, Vaughan DG. Polar regions (Arctic and Antarctic). McCarthy JJ, et al., eds. Climate change 2001: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. 1–841. 42. Cambridge, UK: Cambridge University Press; 2001.
  • Ensminger JT, McCold LN, Webb JW. Environmental Impact Assessment under the National Environmental Policy Act and the Protocol on Environmental Protection to the Antarctic Treaty. Environ Manage. 1999; 24: 13–23.
  • Bargagli R. Environmental contamination in Antarctic ecosystems. Sci Total Environ. 2008; 400: 212–26.
  • Hughes KA. Influence of seasonal environmental variables on the distribution of presumptive fecal Coliforms around an Antarctic research station. Appl Environ Microbiol. 2003; 69: 4884–91.
  • Reed KD, Meece JK, Henkel JS, Shukla SK. Birds, migration and emerging zoonoses: west Nile virus, lyme disease, influenza A and enteropathogens. Clin Med Res. 2003; 1: 5–12.
  • Aronson RB, Thatje S, McClintock JB, Hughes KA. Anthropogenic impacts on marine ecosystems in Antarctica. Ann N Y Acad Sci. 2011; 1223: 82–107.
  • Bonnedahl J, Drobni M, Gauthier-Clerc M, Hernandez J, Granholm S, Kayser Y, etal. Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France. PLoS One. 2009; 4: e5958.
  • Sivertsen A, Billström H, Melefors Ö, Liljequist BO, Wisell KT, Ullberg M, etal. A multicentre hospital outbreak in Sweden caused by introduction of a vanB2 transposon into a stably maintained pRUM-plasmid in an Enterococcus faecium ST192 clone. PLoS One. 2014; 9: e103274.
  • Bustnes JO, Miland O, Fjeld M, Erikstad KE, Skaare JU. Relationships between ecological variables and four organochlorine pollutants in an Artic glaucous gull (Larus hyperboreus) population. Environ Pollut. 2005; 136: 175–85.
  • Schmutz JA, Hobson KA. Geographic, temporal, and age-specific variation in diets of glaucous gulls in Western Alaska. Condor. 1998; 100: 119–30.
  • Bonnedahl J, Hernandez J, Stedt J, Waldenström J, Olsen B, Drobni M. Extended-spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae in gulls, Alaska, USA. Emerg Infect Dis. 2014; 20: 897–9.
  • Dolejska M, Frolkova P, Florek M, Jamborova I, Purgertova M, Kutilova I, etal. CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. J Antimicrob Chemother. 2011; 66: 2784–90.
  • Zarfel G, Galler H, Feierl G, Haas D, Kittinger C, Leitner E, etal. Comparison of extended-spectrum-β-lactamase (ESBL) carrying Escherichia coli from sewage sludge and human urinary tract infection. Environ Pollut. 2013; 173: 192–9.
  • Cowan DA, Chown SL, Convey P, Tuffin M, Hughes K, Pointing S, etal. Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol. 2011; 19: 540–8.
  • Rabbia V, Bello-Toledo H, Jiménez S, Quezada M, Domínguez M, Vergara L, etal. Antibiotic resistance in Escherichia coli strains isolated from Antarctic bird feces, water from inside a wastewater treatment plant, and seawater samples collected in the Antarctic Treaty area. Polar Sci. 2016; 10: 123–31.
  • Rupp ME, Fey PD. Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: considerations for diagnosis, prevention and drug treatment. Drugs. 2003; 63: 353–65.