1,772
Views
74
CrossRef citations to date
0
Altmetric
Original Research Articles

Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro

, , , , , , , , , , , , , & show all
Article: 20181 | Received 28 Nov 2012, Accepted 12 Mar 2013, Published online: 06 May 2013

References

  • Mashburn-Warren L, McLean RJ, Whiteley M. Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology. 2008; 6: 214–9.
  • Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010; 64: 163–84.
  • Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010; 74: 81–94.
  • Alaniz RC, Deatherage BL, Lara JC, Cookson BT. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J Immunol. 2007; 179: 7692–701.
  • Collins BS. Gram-negative outer membrane vesicles in vaccine development. Discov Med. 2011; 12: 7–15.
  • Lee SR, Kim SH, Jeong KJ, Kim KS, Kim YH, Kim SJ, etal. Multi-immunogenic outer membrane vesicles derived from an MsbB-deficient Salmonella enterica serovar typhimurium mutant. J Microbiol Biotechnol. 2009; 19: 1271–9.
  • Roy K, Hamilton DJ, Munson GP, Fleckenstein JM. Outer membrane vesicles induce immune responses to virulence proteins and protect against colonization by enterotoxigenic Escherichia coli. Clin Vaccine Immunol. 2011; 18: 1803–8.
  • Roy N, Barman S, Ghosh A, Pal A, Chakraborty K, Das SS, etal. Immunogenicity and protective efficacy of Vibrio cholerae outer membrane vesicles in rabbit model. FEMS Immunol Med Microbiol. 2010; 60: 18–27.
  • Holst J, Martin D, Arnold R, Huergo CC, Oster P, O'Hallahan J, etal. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine. 2009; 27(Suppl 2): B3–12.
  • Chen DJ, Osterrieder N, Metzger SM, Buckles E, Doody AM, DeLisa MP, etal. Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc Natl Acad Sci USA. 2010; 107: 3099–104.
  • Haurat MF, Aduse-Opoku J, Rangarajan M, Dorobantu L, Gray MR, Curtis MA, etal. Selective sorting of cargo proteins into bacterial membrane vesicles. J Biol Chem. 2011; 286: 1269–76.
  • Kesty NC, Kuehn MJ. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J Biol Chem. 2004; 279: 2069–76.
  • Muralinath M, Kuehn MJ, Roland KL, Curtiss R III. Immunization with Salmonella enterica serovar typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae. Infect Immun. 2011; 79: 887–94.
  • Schroeder J, Aebischer T. Recombinant outer membrane vesicles to augment antigen-specific live vaccine responses. Vaccine. 2009; 27: 6748–54.
  • Finco O, Frigimelica E, Buricchi F, Petracca R, Galli G, Faenzi E, etal. Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines. Proc Natl Acad Sci USA. 2011; 108: 9969–74.
  • Grifantini R, Grandi G, Levine MM, Dougan G, Good MF, Liu MA, Nabel GJ, Nataro JP, Rappuoli R. New generation vaccines. 4th edn. Chlamydia trachomatis vaccines. 2010; New York: Informa Healthcare. 737–45.
  • Clausen T, Southan C, Ehrmann M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell. 2002; 10: 443–55.
  • Skorko-Glonek J, Lipinska B, Krzewski K, Zolese G, Bertoli E, Tanfani F. HtrA heat shock protease interacts with phospholipid membranes and undergoes conformational changes. J Biol Chem. 1997; 272: 8974–82.
  • Strauch KL, Beckwith J. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci USA. 1988; 85: 1576–80.
  • Huston WM, Swedberg JE, Harris JM, Walsh TP, Mathews SA, Timms P. The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 degrees C. FEBS Lett. 2007; 581: 3382–6.
  • Huston WM, Tyndall JD, Lott WB, Stansfield SH, Timms P. Unique residues involved in activation of the multitasking protease/chaperone HtrA from Chlamydia trachomatis. PLoS One. 2011; 6: e24547.
  • Wu X, Lei L, Gong S, Chen D, Flores R, Zhong G. The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol. BMC Microbiol. 2011; 11: 87.
  • Caldwell HD, Kromhout J, Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun. 1981; 31: 1161–76.
  • Montigiani S, Falugi F, Scarselli M, Finco O, Petracca R, Galli G, etal. Genomic approach for analysis of surface proteins in Chlamydia pneumoniae. Infect Immun. 2002; 70: 368–79.
  • Berlanda SF, Doro F, Rodriguez-Ortega MJ, Stella M, Liberatori S, Taddei AR, etal. Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coli ΔtolR IHE3034 mutant. Mol Cell Proteomics. 2008; 7: 473–85.
  • Maxson ME, Darwin AJ. Identification of inducers of the Yersinia enterocolitica phage shock protein system and comparison to the regulation of the RpoE and Cpx extracytoplasmic stress responses. J Bacteriol. 2004; 186: 4199–208.
  • Klock HE, Lesley SA. The polymerase incomplete primer extension (PIPE) method applied to high-throughput cloning and site-directed mutagenesis. Methods Mol Biol. 2009; 498: 91–103.
  • Young IT. Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J Histochem Cytochem. 1977; 25: 935–41.
  • Meoni E, Faenzi E, Frigimelica E, Zedda L, Skibinski D, Giovinazzi S, etal. CT043, a protective antigen that induces a CD4+ Th1 response during Chlamydia trachomatis infection in mice and humans. Infect Immun. 2009; 77: 4168–76.
  • Murdin AD, Su H, Manning DS, Klein MH, Parnell MJ, Caldwell HD. A poliovirus hybrid expressing a neutralization epitope from the major outer membrane protein of Chlamydia trachomatis is highly immunogenic. Infect Immun. 1993; 61: 4406–14.
  • Zhang YX, Stewart S, Joseph T, Taylor HR, Caldwell HD. Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis. J Immunol. 1987; 138: 575–81.
  • Shen QT, Bai XC, Chang LF, Wu Y, Wang HW, Sui SF. Bowl-shaped oligomeric structures on membranes as DegP's new functional forms in protein quality control. Proc Natl Acad Sci USA. 2009; 106: 4858–63.
  • Baud C, Gutsche I, Willery E, de Paepe D, Drobecq H, Gilleron M, etal. Membrane-associated DegP in Bordetella chaperones a repeat-rich secretory protein. Mol Microbiol. 2011; 80: 1625–36.
  • Krishnamachari Y, Salem AK. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv Drug Deliv Rev. 2009; 61: 205–17.
  • Maurer T, Heit A, Hochrein H, Ampenberger F, O'Keeffe M, Bauer S, etal. CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. Eur J Immunol. 2002; 32: 2356–64.
  • Zhang XQ, Dahle CE, Weiner GJ, Salem AK. A comparative study of the antigen-specific immune response induced by co-delivery of CpG ODN and antigen using fusion molecules or biodegradable microparticles. J Pharm Sci. 2007; 96: 3283–92.
  • Gloeckl S, Tyndall JD, Stansfield SH, Timms P, Huston WM. The active site residue V266 of Chlamydial HtrA is critical for substrate binding during both in vitro and in vivo conditions. J Mol Microbiol Biotechnol. 2012; 22: 10–6.
  • Kim S, Sauer RT. Cage assembly of DegP protease is not required for substrate-dependent regulation of proteolytic activity or high-temperature cell survival. Proc Natl Acad Sci USA. 2012; 109: 7263–8.
  • Berlanda Scorza F, Colucci AM, Maggiore L, Sanzone S, Rossi O, Ferlenghi I, etal. High yield production process for Shigella outer membrane particles. PLoS One. 2012; 7: e35616.
  • Needham BD, Carroll SM, Giles DK, Georgiou G, Whiteley M, Trent MS. Modulating the innate immune response by combinatorial engineering of endotoxin. Proc Natl Acad Sci USA. 2013; 110: 1464–9.
  • Vorachek-Warren MK, Ramirez S, Cotter RJ, Raetz CR. A triple mutant of Escherichia coli lacking secondary acyl chains on lipid A. J Biol Chem. 2002; 277: 14194–205.