34,363
Views
1,519
CrossRef citations to date
0
Altmetric
Position Papers

Standardization of sample collection, isolation and analysis methods in extracellular vesicle research

, , , , , , , , , , , & show all
Article: 20360 | Received 23 Feb 2013, Accepted 11 Apr 2013, Published online: 27 May 2013

References

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9: 654–9.
  • Lotvall J, Valadi H. Cell to cell signalling via exosomes through esRNA. Cell Adh Migr. 2007; 1: 156–8.
  • Muratori C, Cavallin LE, Kratzel K, Tinari A, De Milito A, Fais S, etal. Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe. 2009; 6: 218–30.
  • Dear JW, Street JM, Bailey MA. Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intra-renal signaling. Proteomics. 2012 10.1002/pmic.201200285.
  • Quesenberry PJ, Aliotta JM. Cellular phenotype switching and microvesicles. Adv Drug Deliv Rev. 2010; 62: 1141–8.
  • Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, etal. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008; 10: 1470–6.
  • Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009; 21: 575–81.
  • van der Vos KE, Balaj L, Skog J, Breakefield XO. Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol. 2011; 31: 949–59.
  • Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, etal. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA. 2010; 107: 6328–33.
  • Ekstrom K, Valadi H, Sjostrand M, Malmhall C, Bossios A, Eldh M, etal. Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. JEV. 2012; 1: 18389.
  • Nieuwland R, Sturk A. Why do cells release vesicles?. Thromb Res. 2010; 125(Suppl 1): S49–51.
  • Renzulli JF 2nd, Del Tatto M, Dooner G, Aliotta J, Goldstein L, Dooner M, etal. Microvesicle induction of prostate specific gene expression in normal human bone marrow cells. J Urol. 2010; 184: 2165–71.
  • Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, etal. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011; 108: 5003–8.
  • Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011; 39: 7223–33.
  • Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011; 13: 423–33.
  • Vickers KC, Remaley AT. Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol. 2012; 23: 91–7.
  • Nolte-‘t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, t Hoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012; 40: 9272–85.
  • Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012; 40: 10937–49.
  • Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013; 2 20389, doi: http://dx.doi.org/10.3402/jev.v2i0.20389.
  • Mullier F, Bailly N, Chatelain C, Chatelain B, Dogne JM. Pre-analytical issues in the measurement of circulating microparticles: current recommendations and pending questions. J Thromb Haemost. 2013; 11: 693–6.
  • van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012; 64: 676–705.
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013; 200: 373–83.
  • Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010; 73: 1907–20.
  • Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009; 9: 581–93.
  • Shen B, Wu N, Yang JM, Gould SJ. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem. 2011; 286: 14383–95.
  • Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 2007; 5: e158.
  • Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol. 2007; 177: 329–41.
  • Krishnamoorthy L, Bess JW Jr, Preston AB, Nagashima K, Mahal LK. HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat Chem Biol. 2009; 5: 244–50.
  • Marsh M, Theusner K, Pelchen-Matthews A. HIV assembly and budding in macrophages. Biochem Soc Trans. 2009; 37: 185–9.
  • Welsch S, Keppler OT, Habermann A, Allespach I, Krijnse-Locker J, Krausslich HG. HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 2007; 3: e36.
  • Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012; 1820: 940–8.
  • Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009; 6: 267–83.
  • Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, etal. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol. 2004; 31: 114–21.
  • Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005; 17: 879–87.
  • Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, etal. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011; 9: 9.
  • Perkumas KM, Hoffman EA, McKay BS, Allingham RR, Stamer WD. Myocilin-associated exosomes in human ocular samples. Exp Eye Res. 2007; 84: 209–12.
  • Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, etal. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007; 179: 1969–78.
  • Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, etal. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther. 2008; 16: 782–90.
  • Dvorak HF, Quay SC, Orenstein NS, Dvorak AM, Hahn P, Bitzer AM, etal. Tumor shedding and coagulation. Science. 1981; 212: 923–4.
  • Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, etal. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol. 2008; 79: 12–7.
  • Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011; 9: 86.
  • Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate. 2009; 69: 159–67.
  • Ronquist G, Brody I. The prostasome: its secretion and function in man. Biochim Biophys Acta. 1985; 822: 203–18.
  • Aalberts M, Sostaric E, Wubbolts R, Wauben MW, Nolte-‘t Hoen EN, Gadella BM, etal. Spermatozoa recruit prostasomes in response to capacitation induction. Biochim Biophys Acta. 2012 10.1016/j.bbapap.2012.08.008.
  • Ronquist G, Brody I, Gottfries A, Stegmayr B. An Mg2+ and Ca2+-stimulated adenosine triphosphatase in human prostatic fluid-part II. Andrologia. 1978; 10: 427–33.
  • Saez F, Frenette G, Sullivan R. Epididymosomes and prostasomes: their roles in posttesticular maturation of the sperm cells. J Androl. 2003; 24: 149–54.
  • Fraser LR. The “switching on” of mammalian spermatozoa: molecular events involved in promotion and regulation of capacitation. Mol Reprod Dev. 2010; 77: 197–208.
  • Caballero J, Frenette G, Sullivan R. Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Vet Med Int. 2010; 2011: 757194.
  • Ronquist G. Prostasomes are mediators of intercellular communication: from basic research to clinical implications. J Intern Med. 2012; 271: 400–13.
  • Andersson E, Sorensen OE, Frohm B, Borregaard N, Egesten A, Malm J. Isolation of human cationic antimicrobial protein-18 from seminal plasma and its association with prostasomes. Hum Reprod. 2002; 17: 2529–34.
  • Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull. 2008; 31: 1059–62.
  • Berckmans RJ, Sturk A, van Tienen LM, Schaap MC, Nieuwland R. Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood. 2011; 117: 3172–80.
  • Lasser C, O'Neil SE, Ekerljung L, Ekstrom K, Sjostrand M, Lotvall J. RNA-containing exosomes in human nasal secretions. Am J Rhinol Allergy. 2011; 25: 89–93.
  • Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, etal. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012; 10: 5.
  • Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, etal. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J. 2003; 22: 578–83.
  • Levanen B, Bhakta NR, Paredes PT, Barbeau R, Hiltbrunner S, Pollack JL, etal. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol. 2013; 131: 894–903.
  • Qazi KR, Torregrosa Paredes P, Dahlberg B, Grunewald J, Eklund A, Gabrielsson S. Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax. 2010; 65: 1016–24.
  • Skriner K, Adolph K, Jungblut PR, Burmester GR. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum. 2006; 54: 3809–14.
  • Fourcade O, Simon MF, Viode C, Rugani N, Leballe F, Ragab A, etal. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell. 1995; 80: 919–27.
  • Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, etal. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010; 327: 580–3.
  • VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res. 2003; 59: 277–87.
  • Berckmans RJ, Nieuwland R, Tak PP, Boing AN, Romijn FP, Kraan MC, etal. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum. 2002; 46: 2857–66.
  • Gyorgy B, Modos K, Pallinger E, Paloczi K, Pasztoi M, Misjak P, etal. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011; 117: e39–48.
  • Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, etal. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996; 183: 1161–72.
  • Distler JH, Jungel A, Huber LC, Seemayer CA, Reich CF 3rd, Gay RE, etal. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci USA. 2005; 102: 2892–7.
  • Masyuk AI, Huang BQ, Ward CJ, Gradilone SA, Banales JM, Masyuk TV, etal. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol. 2010; 299: G990–9.
  • Raj DA, Fiume I, Capasso G, Pocsfalvi G. A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. Kidney Int. 2012; 81: 1263–72.
  • Wiggins RC, Glatfelter A, Kshirsagar B, Brukman J. Procoagulant activity in normal human urine associated with subcellular particles. Kidney Int. 1986; 29: 591–7.
  • Lasser C, Eldh M, Lotvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp. 2012; e3037.
  • Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006. Chapter 3: Unit 3.22.
  • Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C. Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods. 2008; 338: 21–30.
  • Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, etal. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009; 58: 2498–505.
  • Wang GJ, Liu Y, Qin A, Shah SV, Deng ZB, Xiang X, etal. Thymus exosomes-like particles induce regulatory T cells. J Immunol. 2008; 181: 5242–8.
  • Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, etal. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009; 100: 1603–7.
  • Li J, Sherman-Baust CA, Tsai-Turton M, Bristow RE, Roden RB, Morin PJ. Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer. 2009; 9: 244.
  • Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, etal. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012; 18: 1835–40.
  • Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, etal. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005; 3: 10.
  • Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, etal. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005; 3: 9.
  • Keiser PB, Biggs-Cicatelli S, Moran EE, Schmiel DH, Pinto VB, Burden RE, etal. A phase 1 study of a meningococcal native outer membrane vesicle vaccine made from a group B strain with deleted lpxL1 and synX, over-expressed factor H binding protein, two PorAs and stabilized OpcA expression. Vaccine. 2011; 29: 1413–20.
  • Zollinger WD, Donets MA, Schmiel DH, Pinto VB, Labrie JE 3rd, Moran EE, etal. Design and evaluation in mice of a broadly protective meningococcal group B native outer membrane vesicle vaccine. Vaccine. 2010; 28: 5057–67.
  • Théry C. ISEV RNA Workshop – New York City, October 1–2, 2012. JEV. 2012; 1: 19857.
  • Araldi E, Krämer-Albers E-M, Nolte-‘t Hoen E, Peinado H, Psonka-Antonczyk KM, Rao P, etal. International society for extracellular vesicles: first annual meeting, April 17–21, 2012: ISEV-2012. J Extracell Vesicles. 2012; 1 19995, doi: http://dx.doi.org/10.3402/jev.v1i0.19995.
  • Aharon A, Brenner B. Microparticles and pregnancy complications. Thromb Res. 2011; 127(Suppl 3): S67–71.
  • Strohacker K, Breslin WL, Carpenter KC, Davidson TR, Agha NH, McFarlin BK. Moderate-intensity, premeal cycling blunts postprandial increases in monocyte cell surface CD18 and CD11a and endothelial microparticles following a high-fat meal in young adults. Appl Physiol Nutr Metab. 2012; 37: 530–9.
  • Schmidt WM, Spiel AO, Jilma B, Wolzt M, Muller M. In vivo profile of the human leukocyte microRNA response to endotoxemia. Biochem Biophys Res Commun. 2009; 380: 437–41.
  • Witwer KW, Sarbanes SL, Liu J, Clements JE. A plasma microRNA signature of acute lentiviral infection: biomarkers of CNS disease. AIDS. 2011; 204: 1104–14.
  • Mobius-Winkler S, Hilberg T, Menzel K, Golla E, Burman A, Schuler G, etal. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol. 2009; 107: 1943–50.
  • Sossdorf M, Otto GP, Claus RA, Gabriel HH, Losche W. Cell-derived microparticles promote coagulation after moderate exercise. Med Sci Sports Exerc. 2011; 43: 1169–76.
  • Chaar V, Romana M, Tripette J, Broquere C, Huisse MG, Hue O, etal. Effect of strenuous physical exercise on circulating cell-derived microparticles. Clin Hemorheol Microcirc. 2011; 47: 15–25.
  • Maguire CA, Balaj L, Sivaraman S, Crommentuijn MH, Ericsson M, Mincheva-Nilsson L, etal. Microvesicle-associated AAV vector as a novel gene delivery system. Mol Ther. 2012; 20: 960–71.
  • Church GM. The personal genome project. Mol Syst Biol. 2005; 1 2005.0030.
  • Ball MP, Thakuria JV, Zaranek AW, Clegg T, Rosenbaum AM, Wu X, etal. A public resource facilitating clinical use of genomes. Proc Natl Acad Sci USA. 2012; 109: 11920–7.
  • Lunshof JE, Bobe J, Aach J, Angrist M, Thakuria JV, Vorhaus DB, etal. Personal genomes in progress: from the human genome project to the personal genome project. Dialogues Clin Neurosci. 2010; 12: 47–60.
  • Witwer KW. Data submission and quality in microarray-based microRNA profiling. Clin Chem. 2013; 59: 392–400.
  • Brazma A. Minimum Information About a Microarray Experiment (MIAME)-successes, failures, challenges. Scientific World J. 2009; 9: 420–3.
  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, etal. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001; 29: 365–71.
  • Wicherts JM, Bakker M, Molenaar D. Willingness to share research data is related to the strength of the evidence and the quality of reporting of statistical results. PLoS One. 2011; 6: e26828.
  • Baggerly K. More data, please!. Clin Chem. 2013; 59: 459–61.
  • Ioannidis JP, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, etal. Repeatability of published microarray gene expression analyses. Nat Genet. 2009; 41: 149–55.
  • Vines TH, Andrew RL, Bock DG, Franklin MT, Gilbert KJ, Kane NC, etal. Mandated data archiving greatly improves access to research data. Faseb J. 2013; 27: 1304–8.
  • Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002; 30: 207–10.
  • Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, etal. ArrayExpress-a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2003; 31: 68–71.
  • Ikeo K, Ishi-i J, Tamura T, Gojobori T, Tateno Y. CIBEX: center for information biology gene expression database. C R Biol. 2003; 326: 1079–82.
  • Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, etal. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012; 10: e1001450.
  • Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, etal. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013; 2 20384, doi: http://dx.doi.org/10.3402/jev.v2i0.20384.
  • George JN, Thoi LL, McManus LM, Reimann TA. Isolation of human platelet membrane microparticles from plasma and serum. Blood. 1982; 60: 834–40.
  • Gemmell CH, Sefton MV, Yeo EL. Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. Inhibition by RGDS and a Glanzmann's thrombasthenia defect. J Biol Chem. 1993; 268: 14586–9.
  • Noerholm M, Balaj L, Limperg T, Salehi A, Zhu LD, Hochberg FH, etal. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer. 2012; 12: 22.
  • Heegaard NH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer. 2012; 130: 1378–86.
  • Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the microRNA spectrum between serum and plasma. PLoS One. 2012; 7: e41561.
  • D'Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, etal. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010; 31: 2765–73.
  • Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, etal. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008; 18: 997–1006.
  • Oberhauser AF, Balan V, Fernandez-Badilla CL, Fernandez JM. RT-PCR cloning of Rab3 isoforms expressed in peritoneal mast cells. FEBS Lett. 1994; 339: 171–4.
  • Beutler E, Gelbart T, Kuhl W. Interference of heparin with the polymerase chain reaction. Biotechniques. 1990; 9: 166.
  • Yokota M, Tatsumi N, Nathalang O, Yamada T, Tsuda I. Effects of heparin on polymerase chain reaction for blood white cells. J Clin Lab Anal. 1999; 13: 133–40.
  • Satsangi J, Jewell DP, Welsh K, Bunce M, Bell JI. Effect of heparin on polymerase chain reaction. Lancet. 1994; 343: 1509–10.
  • Krauel K, Hackbarth C, Furll B, Greinacher A. Heparin-induced thrombocytopenia: in vitro studies on the interaction of dabigatran, rivaroxaban, and low-sulfated heparin, with platelet factor 4 and anti-PF4/heparin antibodies. Blood. 2012; 119: 1248–55.
  • Gao C, Boylan B, Fang J, Wilcox DA, Newman DK, Newman PJ. Heparin promotes platelet responsiveness by potentiating alphaIIbbeta3-mediated outside-in signaling. Blood. 2011; 117: 4946–52.
  • Kim DJ, Linnstaedt S, Palma J, Park JC, Ntrivalas E, Kwak-Kim JY, etal. Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagn. 2012; 14: 71–80.
  • Johnson ML, Navanukraw C, Grazul-Bilska AT, Reynolds LP, Redmer DA. Heparinase treatment of RNA before quantitative real-time RT-PCR. Biotechniques. 2003; 35: 1140–2, 4.
  • Imai H, Yamada O, Morita S, Suehiro S, Kurimura T. Detection of HIV-1 RNA in heparinized plasma of HIV-1 seropositive individuals. J Virol Methods. 1992; 36: 181–4.
  • Macey M, Azam U, McCarthy D, Webb L, Chapman ES, Okrongly D, etal. Evaluation of the anticoagulants EDTA and citrate, theophylline, adenosine, and dipyridamole (CTAD) for assessing platelet activation on the ADVIA 120 hematology system. Clin Chem. 2002; 48: 891–9.
  • Yuana Y, Bertina RM, Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost. 2011; 105: 396–408.
  • Robert S, Poncelet P, Lacroix R, Arnaud L, Giraudo L, Hauchard A, etal. Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies?. J Thromb Haemost. 2009; 7: 190–7.
  • Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, etal. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011; 68: 2667–88.
  • Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F. Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost. 2013 10.1111/jth.12207.
  • Jayachandran M, Miller VM, Heit JA, Owen WG. Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods. 2012; 375: 207–14.
  • Shah MD, Bergeron AL, Dong JF, Lopez JA. Flow cytometric measurement of microparticles: pitfalls and protocol modifications. Platelets. 2008; 19: 365–72.
  • Lippi G, Fontana R, Avanzini P, Aloe R, Ippolito L, Sandei F, etal. Influence of mechanical trauma of blood and hemolysis on PFA-100 testing. Blood Coagul Fibrinolysis. 2012; 23: 82–6.
  • Lance MD, Henskens YM, Nelemans P, Theunissen MH, Oerle RV, Spronk HM, etal. Do blood collection methods influence whole-blood platelet function analysis?. Platelets. 2012; 24: 275–81.
  • Breddin HK, Harder S. [The value of platelet function tests]. Vasa. 2003; 32: 123–9.
  • Mani H, Kirchmayr K, Klaffling C, Schindewolf M, Luxembourg B, Linnemann B, etal. Influence of blood collection techniques on platelet function. Platelets. 2004; 15: 315–8.
  • Milburn JA, Ford I, Cassar K, Fluck N, Brittenden J. Platelet activation, coagulation activation and C-reactive protein in simultaneous samples from the vascular access and peripheral veins of haemodialysis patients. Int J Lab Hematol. 2012; 34: 52–8.
  • Lippi G, Salvagno GL, Montagnana M, Poli G, Guidi GC. Influence of the needle bore size on platelet count and routine coagulation testing. Blood Coagul Fibrinolysis. 2006; 17: 557–61.
  • Lacroix R, Judicone C, Poncelet P, Robert S, Arnaud L, Sampol J, etal. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost. 2012; 10: 437–46.
  • Ayers L, Kohler M, Harrison P, Sargent I, Dragovic R, Schaap M, etal. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res. 2011; 127: 370–7.
  • Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, etal. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med. 1987; 316: 1514–8.
  • Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, etal. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999; 284: 2177–81.
  • Haus E, Lakatua DJ, Swoyer J, Sackett-Lundeen L. Chronobiology in hematology and immunology. Am J Anat. 1983; 168: 467–517.
  • Seaman GV, Engel R, Swank RL, Hissen W. Circadian periodicity in some physicochemical parameters of circulating blood. Nature. 1965; 207: 833–5.
  • Ehrly AM, Jung G. Circadian rhythm of human blood viscosity. Biorheology. 1973; 10: 577–83.
  • Scheer FA, Michelson AD, Frelinger AL 3rd, Evoniuk H, Kelly EE, McCarthy M, etal. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS One. 2011; 6: e24549.
  • Lange T, Dimitrov S, Born J. Effects of sleep and circadian rhythm on the human immune system. Ann NY Acad Sci. 2010; 1193: 48–59.
  • Madden LA, Vince RV, Sandstrom ME, Taylor L, McNaughton L, Laden G. Microparticle-associated vascular adhesion molecule-1 and tissue factor follow a circadian rhythm in healthy human subjects. Thromb Haemost. 2008; 99: 909–15.
  • Mutungi G, Waters D, Ratliff J, Puglisi M, Clark RM, Volek JS, etal. Eggs distinctly modulate plasma carotenoid and lipoprotein subclasses in adult men following a carbohydrate-restricted diet. J Nutr Biochem. 2010; 21: 261–7.
  • Lapointe A, Couillard C, Lemieux S. Effects of dietary factors on oxidation of low-density lipoprotein particles. J Nutr Biochem. 2006; 17: 645–58.
  • Potts JL, Coppack SW, Fisher RM, Humphreys SM, Gibbons GF, Frayn KN. Impaired postprandial clearance of triacylglycerol-rich lipoproteins in adipose tissue in obese subjects. Am J Physiol. 1995; 268: E588–94.
  • Rosencranz R, Bogen SA. Clinical laboratory measurement of serum, plasma, and blood viscosity. Am J Clin Pathol. 2006; 125(Suppl): S78–86.
  • Momen-Heravi F, Balaj L, Alian S, Trachtenberg AJ, Hochberg FH, Skog J, etal. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol. 2012; 3: 162.
  • Kwaan HC. Role of plasma proteins in whole blood viscosity: a brief clinical review. Clin Hemorheol Microcirc. 2010; 44: 167–76.
  • Reinhart WH. Molecular biology and self-regulatory mechanisms of blood viscosity: a review. Biorheology. 2001; 38: 203–12.
  • Gertz MA. Waldenstrom macroglobulinemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol. 2012; 87: 503–10.
  • Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, etal. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008; 3: e3694.
  • Hess JR, Sparrow RL, van der Meer PF, Acker JP, Cardigan RA, Devine DV. Red blood cell hemolysis during blood bank storage: using national quality management data to answer basic scientific questions. Transfusion. 2009; 49: 2599–603.
  • Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, etal. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila). 2012; 5: 492–7.
  • Cattaneo M, Lecchi A, Zighetti ML, Lussana F. Platelet aggregation studies: autologous platelet-poor plasma inhibits platelet aggregation when added to platelet-rich plasma to normalize platelet count. Haematologica. 2007; 92: 694–7.
  • Nilsson RJ, Balaj L, Hulleman E, van Rijn S, Pegtel DM, Walraven M, etal. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2011; 118: 3680–3.
  • Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK. Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir. 2011; 27: 14394–400.
  • Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, etal. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010; 16: 34–8.
  • Zakowski JJ, Bruns DE. Biochemistry of human alpha amylase isoenzymes. Crit Rev Clin Lab Sci. 1985; 21: 283–322.
  • Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012; 7: e30679.
  • Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, etal. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res. 2009; 8: 1304–14.
  • Dorn LD, Lucke JF, Loucks TL, Berga SL. Salivary cortisol reflects serum cortisol: analysis of circadian profiles. Ann Clin Biochem. 2007; 44: 281–4.
  • Simkin M, Abdalla M, El-Mogy M, Haj-Ahmad Y. Differences in the quantity of DNA found in the urine and saliva of smokers versus nonsmokers: implications for the timing of epigenetic events. Epigenomics. 2012; 4: 343–52.
  • Port K. Serum and saliva cortisol responses and blood lactate accumulation during incremental exercise testing. Int J Sports Med. 1991; 12: 490–4.
  • Rohleder N, Nater UM. Determinants of salivary alpha-amylase in humans and methodological considerations. Psychoneuroendocrinology. 2009; 34: 469–85.
  • Schwartz EB, Granger DA. Transferrin enzyme immunoassay for quantitative monitoring of blood contamination in saliva. Clin Chem. 2004; 50: 654–6.
  • Harmon AG, Towe-Goodman NR, Fortunato CK, Granger DA. Differences in saliva collection location and disparities in baseline and diurnal rhythms of alpha-amylase: a preliminary note of caution. Horm Behav. 2008; 54: 592–6.
  • Ogawa Y, Taketomi Y, Murakami M, Tsujimoto M, Yanoshita R. Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol Pharm Bull. 2013; 36: 66–75.
  • Gonzales PA, Zhou H, Pisitkun T, Wang NS, Star RA, Knepper MA, etal. Isolation and purification of exosomes in urine. Methods Mol Biol. 2010; 641: 89–99.
  • van Balkom BW, Pisitkun T, Verhaar MC, Knepper MA. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int. 2011; 80: 1138–45.
  • Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, etal. Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics. 2010; 9: 1324–38.
  • Miranda KC, Bond DT, McKee M, Skog J, Paunescu TG, Da Silva N, etal. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 2010; 78: 191–9.
  • Zhou H, Yuen PS, Pisitkun T, Gonzales PA, Yasuda H, Dear JW, etal. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006; 69: 1471–6.
  • Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, etal. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. 2007; 292: F1657–61.
  • Vyletal P, Bleyer AJ, Kmoch S. Uromodulin biology and pathophysiology-an update. Kidney Blood Press Res. 2010; 33: 456–75.
  • Hogan MC, Manganelli L, Woollard JR, Masyuk AI, Masyuk TV, Tammachote R, etal. Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol. 2009; 20: 278–88.
  • Fernandez-Llama P, Khositseth S, Gonzales PA, Star RA, Pisitkun T, Knepper MA. Tamm-Horsfall protein and urinary exosome isolation. Kidney Int. 2010; 77: 736–42.
  • Musante L, Saraswat M, Duriez E, Byrne B, Ravida A, Domon B, etal. Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. PLoS One. 2012; 7: e37279.
  • Howarth PH, Persson CG, Meltzer EO, Jacobson MR, Durham SR, Silkoff PE. Objective monitoring of nasal airway inflammation in rhinitis. J Allergy Clin Immunol. 2005; 115: S414–41.
  • Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, etal. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011; 19: 1769–79.
  • Riechelmann H, Deutschle T, Friemel E, Gross HJ, Bachem M. Biological markers in nasal secretions. Eur Respir J. 2003; 21: 600–5.
  • Belda J, Parameswaran K, Keith PK, Hargreave FE. Repeatability and validity of cell and fluid-phase measurements in nasal fluid: a comparison of two methods of nasal lavage. Clin Exp Allergy. 2001; 31: 1111–5.
  • Deutschle T, Friemel E, Starnecker K, Riechelmann H. Nasal cytologies-impact of sampling method, repeated sampling and interobserver variability. Rhinology. 2005; 43: 215–20.
  • Roponen M, Seuri M, Nevalainen A, Randell J, Hirvonen MR. Nasal lavage method in the monitoring of upper airway inflammation: seasonal and individual variation. Inhal Toxicol. 2003; 15: 649–61.
  • Di Lorenzo G, Mansueto P, Melluso M, Candore G, Colombo A, Pellitteri ME, etal. Allergic rhinitis to grass pollen: measurement of inflammatory mediators of mast cell and eosinophils in native nasal fluid lavage and in serum out of and during pollen season. J Allergy Clin Immunol. 1997; 100: 832–7.
  • Di Lorenzo G, Mansueto P, Melluso M, Morici G, Norrito F, Esposito Pellitteri M, etal. Non-specific airway hyperresponsiveness in mono-sensitive Sicilian patients with allergic rhinitis. Its relationship to total serum IgE levels and blood eosinophils during and out of the pollen season. Clin Exp Allergy. 1997; 27: 1052–9.
  • Ricca V, Landi M, Ferrero P, Bairo A, Tazzer C, Canonica GW, etal. Minimal persistent inflammation is also present in patients with seasonal allergic rhinitis. J Allergy Clin Immunol. 2000; 105: 54–7.
  • Henkin RI, Velicu I. cAMP and cGMP in nasal mucus: relationships to taste and smell dysfunction, gender and age. Clin Invest Med. 2008; 31: E71–7.
  • Labbok MH, Clark D, Goldman AS. Breastfeeding: maintaining an irreplaceable immunological resource. Nat Rev Immunol. 2004; 4: 565–72.
  • Matheson MC, Allen KJ, Tang ML. Understanding the evidence for and against the role of breastfeeding in allergy prevention. Clin Exp Allergy. 2012; 42: 827–51.
  • Field CJ. The immunological components of human milk and their effect on immune development in infants. J Nutr. 2005; 135: 1–4.
  • Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, etal. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012; 8: 118–23.
  • Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE. Bovine milk exosome proteome. J Proteomics. 2011; 75: 1486–92.
  • Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun. 2010; 396: 528–33.
  • Yamada T, Inoshima Y, Matsuda T, Ishiguro N. Comparison of methods for isolating exosomes from bovine milk. J Vet Med Sci. 2012; 74: 1523–5.
  • Lawrence RM, Pane CA. Human breast milk: current concepts of immunology and infectious diseases. Curr Probl Pediatr Adolesc Health Care. 2007; 37: 7–36.
  • Macias C, Schweigert FJ. Changes in the concentration of carotenoids, vitamin A, alpha-tocopherol and total lipids in human milk throughout early lactation. Ann Nutr Metab. 2001; 45: 82–5.
  • Castellote C, Casillas R, Ramirez-Santana C, Perez-Cano FJ, Castell M, Moretones MG, etal. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J Nutr. 2011; 141: 1181–7.
  • Wilde CJ, Knight CH, Flint DJ. Control of milk secretion and apoptosis during mammary involution. J Mammary Gland Biol Neoplasia. 1999; 4: 129–36.
  • Lopez C, Menard O. Human milk fat globules: polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids Surf B Biointerfaces. 2011; 83: 29–41.
  • Lawrence RA. Storage of human milk and the influence of procedures on immunological components of human milk. Acta Paediatr Suppl. 1999; 88: 14–8.
  • Saarela T, Kokkonen J, Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005; 94: 1176–81.
  • Pittard WB 3rd, Bill K. Human milk banking. Effect of refrigeration on cellular components. Clin Pediatr (Phila). 1981; 20: 31–3.
  • Mehta NR, Jones JB, Hamosh M. Lipases in preterm human milk: ontogeny and physiologic significance. J Pediatr Gastroenterol Nutr. 1982; 1: 317–26.
  • Harrington MG, Fonteh AN, Oborina E, Liao P, Cowan RP, McComb G, etal. The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res. 2009; 6: 10.
  • Filatov MV, Landa SB, Pantina RA, Garmai Iu P. [Investigation of exosomes secreted by different normal and malignant cells in vitro and in vivo]. Klin Lab Diagn. 2010; 35–43.
  • Vella LJ, Greenwood DL, Cappai R, Scheerlinck JP, Hill AF. Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol. 2008; 124: 385–93.
  • Saman S, Kim W, Raya M, Visnick Y, Miro S, Jackson B, etal. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem. 2012; 287: 3842–9.
  • Teunissen CE, Tumani H, Bennett JL, Berven FS, Brundin L, Comabella M, etal. Consensus guidelines for CSF and blood biobanking for CNS biomarker studies. Mult Scler Int. 2011; 246412.
  • PrecisionMed. PrecisionMed 2013. [cited 2013 April 5]. Available from: http://www.precisionmed.com/cerebrospinal-fluid..
  • Irani DN, Anderson C, Gundry R, Cotter R, Moore S, Kerr DA, etal. Cleavage of cystatin C in the cerebrospinal fluid of patients with multiple sclerosis. Ann Neurol. 2006; 59: 237–47.
  • Mullen KM, Gocke AR, Allie R, Ntranos A, Grishkan IV, Pardo C, etal. Expression of CCR7 and CD45RA in CD4+ and CD8+ subsets in cerebrospinal fluid of 134 patients with inflammatory and non-inflammatory neurological diseases. J Neuroimmunol. 2012; 249: 86–92.
  • Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, etal. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol. 2002; 168: 3235–41.
  • Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell. 1997; 8: 2631–45.
  • Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA. Ectosomes released by human neutrophils are specialized functional units. J Immunol. 1999; 163: 4564–73.
  • Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJ, etal. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol. 2008; 180: 3081–90.
  • Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967; 13: 269–88.
  • Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci. 2012; 37: 460–5.
  • Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, etal. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces. 2011; 87: 146–50.
  • Svedberg T, Pederson KO. The ultracentrifuge. 1940; Oxford, UK: Oxford University.
  • Zinsser H, Tang FF. Studies in ultrafiltration. J Exp Med. 1927; 46: 357–78.
  • Elkana Y, Thornton A, Zuckerman AJ. Purification of hepatitis A virus by affinity chromatography. J Immunol Methods. 1979; 25: 185–7.
  • Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, etal. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods. 2002; 270: 211–26.
  • Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J Immunol. 2012; 189: 744–54.
  • Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, etal. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2012; 121: 984–95.
  • Kessler RJ, Fanestil DD. Interference by lipids in the determination of protein using bicinchoninic acid. Anal Biochem. 1986; 159: 138–42.
  • Palma J, Yaddanapudi SC, Pigati L, Havens MA, Jeong S, Weiner GA, etal. MicroRNAs are exported from malignant cells in customized particles. Nucleic Acids Res. 2012; 40: 9125–38.
  • Aalberts M, van Dissel-Emiliani FM, van Adrichem NP, van Wijnen M, Wauben MH, Stout TA, etal. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol Reprod. 2012; 86: 82.
  • Rickwood D, Ford T, Steensgaard J. Centrifugation: essential data. 1994; West Sussex, UK: John Wiley & Sons Ltd.
  • Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, etal. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods. 2001; 247: 163–74.
  • Rabesandratana H, Toutant JP, Reggio H, Vidal M. Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during In vitro maturation of reticulocytes. Blood. 1998; 91: 2573–80.
  • Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W, Hoernschemeyer J, etal. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem. 2003; 278: 10963–72.
  • Kim G, Yoo CE, Kim M, Kang HJ, Park D, Lee M, etal. Noble polymeric surface conjugated with zwitterionic moieties and antibodies for the isolation of exosomes from human serum. Bioconjug Chem. 2012; 23: 2114–20.
  • Yoo CE, Kim G, Kim M, Park D, Kang HJ, Lee M, etal. A direct extraction method for microRNAs from exosomes captured by immunoaffinity beads. Anal Biochem. 2012; 431: 96–8.
  • Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics. 2010; 9: 197–208.
  • Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009; 9: 4997–5000.
  • Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, etal. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010; 10: 505–11.
  • Coren LV, Shatzer T, Ott DE. CD45 immunoaffinity depletion of vesicles from Jurkat T cells demonstrates that exosomes contain CD45: no evidence for a distinct exosome/HIV-1 budding pathway. Retrovirology. 2008; 5: 64.
  • Ott DE. Purification of HIV-1 virions by subtilisin digestion or CD45 immunoaffinity depletion for biochemical studies. Methods Mol Biol. 2009; 485: 15–25.
  • Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, etal. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012; 56: 293–304.
  • Rana S, Yue S, Stadel D, Zoller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol. 2012; 44: 1574–84.
  • Alvarez ML, Khosroheidari M, Kanchi Ravi R, Distefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012; 82: 1024–32.
  • Taylor DD, Zacharias W, Gercel-Taylor C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol. 2011; 728: 235–46.
  • Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004; 101: 13368–73.
  • Bhagat AA, Kuntaegowdanahalli SS, Papautsky I. Continuous particle separation in spiral microchannels using Dean flows and differential migration. Lab Chip. 2008; 8: 1906–14.
  • Winkleman A, Perez-Castillejos R, Gudiksen KL, Phillips ST, Prentiss M, Whitesides GM. Density-based diamagnetic separation: devices for detecting binding events and for collecting unlabeled diamagnetic particles in paramagnetic solutions. Anal Chem. 2007; 79: 6542–50.
  • van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010; 8: 2596–607.
  • Sustar V, Bedina-Zavec A, Stukelj R, Frank M, Bobojevic G, Jansa R, etal. Nanoparticles isolated from blood: a reflection of vesiculability of blood cells during the isolation process. Int J Nanomedicine. 2011; 6: 2737–48.
  • Cloutier N, Tan S, Boudreau LH, Cramb C, Subbaiah R, Lahey L, etal. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med. 2012; 5: 235–49.
  • Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012; 21: R125–34.
  • Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986; 56: 930–3.
  • Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ. Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 2: 618–34.
  • Yuana Y, Oosterkamp TH, Bahatyrova S, Ashcroft B, Garcia Rodriguez P, Bertina RM, etal. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost. 2010; 8: 315–23.
  • Sharma S, Rasool HI, Palanisamy V, Mathisen C, Schmidt M, Wong DT, etal. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. 2010; 4: 1921–6.
  • Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, etal. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine. 2011; 7: 780–8.
  • Bell NC, Minelli C, Tompkins J, Stevens MM, Shard AG. Emerging techniques for submicrometer particle sizing applied to Stober silica. Langmuir. 2012; 28: 10860–72.
  • Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010; 27: 796–810.
  • Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargeant II. Extracellular vesicle sizing and enumeration by Nanoparticle Tracking Analysis. J Extracell Vesicles. 2013; 2 19671, doi: http://dx.doi.org/10.3402/jev.v2i0.19671.
  • Gercel-Taylor C, Atay S, Tullis RH, Kesimer M, Taylor DD. Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Anal Biochem. 2012; 428: 44–53.
  • Momen-Heravi F, Balaj L, Alian S, Tigges J, Toxavidis V, Ericsson M, etal. Alternative methods for characterization of extracellular vesicles. Front Physiol. 2012; 3: 354.
  • Garza-Licudine E, Deo D, Yu S, Uz-Zaman A, Dunbar WB. Portable nanoparticle quantization using a resizable nanopore instrument – the IZON qNano. Conf Proc IEEE Eng Med Biol Soc. 2010; 2010: 5736–9.
  • de Vrij J, Maas SL, van Nispen M, Sena-Esteves M, Limpens RW, Koster AJ, etal. Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. 2013; Nanomedicine (Lond).
  • Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, etal. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res. 2011; 109: 724–8.
  • Lacroix R, Robert S, Poncelet P, Kasthuri RS, Key NS, Dignat-George F. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost. 2010; 8: 2571–4.
  • Lacroix R, Robert S, Poncelet P, Dignat-George F. Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost. 2010; 36: 807–18.
  • Chandler WL, Yeung W, Tait JF. A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J Thromb Haemost. 2011; 9: 1216–24.
  • Robert S, Lacroix R, Poncelet P, Harhouri K, Bouriche T, Judicone C, etal. High-sensitivity flow cytometry provides access to standardized measurement of small-size microparticles-brief report. Arterioscler Thromb Vasc Biol. 2012; 32: 1054–8.
  • van der Vlist EJ, Nolte-‘t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc. 2012; 7: 1311–26.
  • Mullier F, Bailly N, Chatelain C, Dogne JM, Chatelain B. More on: calibration for the measurement of microparticles: needs, interests, and limitations of calibrated polystyrene beads for flow cytometry-based quantification of biological microparticles. J Thromb Haemost. 2011; 9: 1679–81. author reply 81–2.
  • Aass HC, Ovstebo R, Troseid AM, Kierulf P, Berg JP, Henriksson CE. Fluorescent particles in the antibody solution result in false TF- and CD14-positive microparticles in flow cytometric analysis. Cytometry A. 2011; 79: 990–9.
  • Gyorgy B, Szabo TG, Turiak L, Wright M, Herczeg P, Ledeczi Z, etal. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One. 2012; 7: e49726.
  • Buschow SI, Nolte-‘t Hoen EN, van Niel G, Pols MS, ten Broeke T, Lauwen M, etal. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic. 2009; 10: 1528–42.
  • Larson MC, Luthi MR, Hogg N, Hillery CA. Calcium-phosphate microprecipitates mimic microparticles when examined with flow cytometry. Cytometry A. 2013; 83: 242–50.
  • van der Pol E, van Gemert MJ, Sturk A, Nieuwland R, van Leeuwen TG. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost. 2012; 10: 919–30.
  • Bobrie A, Colombo M, Krumeich S, Raposo G, Théry C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. 2012; 1 18397, doi: http://dx.doi.org/10.3402/jev.v1i0.18397.
  • van der Vlist EJ, Arkesteijn GJ, van de Lest CHA, Stoorvogel W, Nolte-‘t Hoen EN, Wauben MH. CD4+ T cell activation promotes the differential release of distinct populations of nanosized vesicles. J Extracell Vesicles. 2012; 1 18364, doi: http://dx.doi.org/10.3402/jev.v1i0.18364.
  • Nolte-‘t Hoen EN, van der Vlist EJ, de Boer-Brouwer M, Arkesteijn GJ, Stoorvogel W, Wauben MH. Dynamics of dendritic cell-derived vesicles: high-resolution flow cytometric analysis of extracellular vesicle quantity and quality. J Leukoc Biol. 2013; 93: 395–402.
  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, etal. Neutrophil extracellular traps kill bacteria. Science. 2004; 303: 1532–5.
  • Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med. 2011; 17: 1381–90.
  • Williams JC, Mackman N. MPs or ICs?. Blood. 2011; 117: 1101–2.