1,679
Views
46
CrossRef citations to date
0
Altmetric
Short Communications

Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation

&
Article: 22484 | Received 29 Jul 2013, Accepted 11 Oct 2013, Published online: 11 Dec 2013

References

  • Berenreiterova M, Flegr J, Kubena AA, Nemec P. The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PLoS One. 2011; 6: e28925.
  • Di Cristina M, Marocco D, Galizi R, Proietti C, Spaccapelo R, Crisanti A. Temporal and spatial distribution of Toxoplasma gondii differentiation into Bradyzoites and tissue cyst formation in vivo. Infect Immun. 2008; 76: 3491–501.
  • Kannan G, Moldovan K, Xiao J-C, Yolken RH, Jones-Brando L, Pletnikov MV. Toxoplasma gondii strain-dependent effects on mouse behaviour. Folia Parasitol. 2010; 57: 151–5.
  • da Silva RC, Langoni H. Toxoplasma gondii: host–parasite interaction and behavior manipulation. Parasitol Res. 2009; 105: 893–8.
  • Webster JP. The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizophr Bull. 2007; 33: 752–6.
  • Vyas A, Kim S-K, Giacomini N, Boothroyd JC, Sapolsky RM. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci U S A. 2007; 104: 6442–7.
  • Vyas A, Kim SK, Sapolsky RM. The effects of toxoplasma infection on rodent behavior are dependent on dose of the stimulus. Neuroscience. 2007; 148: 342–8.
  • Flegr J. Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis. J Exp Biol. 2013; 216: 127–33.
  • Arias I, Sorlozano A, Villegas E, de Dios Luna J, McKenney K, Cervilla J, etal. Infectious agents associated with schizophrenia: a meta-analysis. Schizophr Res. 2012; 136: 128–36.
  • Torrey EF, Bartko JJ, Lun ZR, Yolken RH. Antibodies to Toxoplasma gondii in patients with schizophrenia: a meta-analysis. Schizophr Bull. 2007; 33: 729–36.
  • El-Sahn AA, Shatat HZ, Ghitany EM. Seropositivity of toxoplasmosis in patients with schizophrenia. J Egypt Public Health Assoc. 2005; 80: 509–24.
  • Regev-Rudzki N, Wilson Danny W, Carvalho Teresa G, Sisquella X, Coleman Bradley M, Rug M, etal. Cell–Cell Communication between Malaria-Infected Red Blood Cells via Exosome-like Vesicles. Cell. 2013; 153: 1120–33.
  • Twu O, de Miguel N, Lustig G, Stevens GC, Vashisht AA, Wohlschlegel JA, etal. Trichomonas vaginalis exosomes deliver Cargo to host cells and mediate Hostratio Parasite interactions. PLoS Pathog. 2013; 9: e1003482.
  • Silverman JM, Clos J, de'Oliveira CC, Shirvani O, Fang Y, Wang C, etal. An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci. 2010; 123: 842–52.
  • Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood. 2007; 110: 3234–44.
  • Meckes DG Jr., Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A. 2013; 110(31): E2925–33.
  • Sirois I, Raymond MA, Brassard N, Cailhier JF, Fedjaev M, Hamelin K, etal. Caspase-3-dependent export of TCTP: a novel pathway for antiapoptotic intercellular communication. Cell Death Differ. 2011; 18: 549–62.
  • Lässer C, Eldh M, Lotvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp. 2012; 59 e3037.
  • Scearce LM, Brestelli JE, McWeeney SK, Lee CS, Mazzarelli J, Pinney DF, etal. Functional genomics of the endocrine pancreas: the pancreas clone set and PancChip, new resources for diabetes research. Diabetes. 2002; 51: 1997–2004.
  • Jin R, Chow VT, Tan PH, Dheen ST, Duan W, Bay BH. Metallothionein 2A expression is associated with cell proliferation in breast cancer. Carcinogenesis. 2002; 23: 81–6.
  • Laghaei R, Evans DG, Coalson RD. Metal binding sites of human H-chain ferritin and iron transport mechanism to the ferroxidase sites: a molecular dynamics simulation study. Proteins. 2013; 81: 1042–50.
  • Blanch A, Robinson F, Watson IR, Cheng LS, Irwin MS. Eukaryotic translation elongation factor 1-alpha 1 inhibits p53 and p73 dependent apoptosis and chemotherapy sensitivity. PLoS One. 2013; 8: E66436.
  • Tsai NP, Wilkerson JR, Guo W, Maksimova MA, DeMartino GN, Cowan CW, etal. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell. 2012; 151: 1581–94.
  • Kelkar A, Dobberstein B. Sec61beta, a subunit of the Sec61 protein translocation channel at the endoplasmic reticulum, is involved in the transport of Gurken to the plasma membrane. BMC Cell Biol. 2009; 10: 11.
  • Sakane A, Abdallah AA, Nakano K, Honda K, Ikeda W, Nishikawa Y, etal. Rab13 small G protein and junctional Rab13-binding protein (JRAB) orchestrate actin cytoskeletal organization during epithelial junctional development. J Biol Chem. 2012; 287: 42455–68.
  • Sakane A, Honda K, Sasaki T. Rab13 regulates neurite outgrowth in PC12 cells through its effector protein, JRAB/MICAL-L2. Mol Cell Biol. 2010; 30: 1077–87.
  • Adachi Y, Pavlakis GN, Copeland TD. Identification and characterization of SET, a nuclear phosphoprotein encoded by the translocation break point in acute undifferentiated leukemia. J Biol Chem. 1994; 269: 2258–62.
  • Lam BD, Anthony EC, Hordijk PL. Cytoplasmic targeting of the proto-oncogene SET promotes cell spreading and migration. FEBS Lett. 2013; 587: 111–19.
  • Jeon BJ, Yang Y, Kyung Shim S, Yang HM, Cho D, Ik Bang S. Thymosin beta-4 promotes mesenchymal stem cell proliferation via an interleukin-8-dependent mechanism. Exp Cell Res. 2013; 319 :2526–34.
  • Xiong Y, Zhang Y, Mahmood A, Meng Y, Zhang ZG, Morris DC, etal. Neuroprotective and neurorestorative effects of thymosin beta4 treatment initiated 6 hours after traumatic brain injury in rats. J Neurosurg. 2012; 116: 1081–92.
  • Xiong Y, Mahmood A, Meng Y, Zhang Y, Zhang ZG, Morris DC, etal. Neuroprotective and neurorestorative effects of thymosin beta4 treatment following experimental traumatic brain injury. Ann N Y Acad Sci. 2012; 1270: 51–8.
  • Eckel-Mahan KL, Storm DR. Rookie snail protein LAPS veteran C/EBP: net transcriptional proceeds for long-term facilitation. Neuron. 2006; 49: 645–6.
  • Kim H, Chang DJ, Lee JA, Lee YS, Kaang BK. Identification of nuclear/nucleolar localization signal in Aplysia learning associated protein of slug with a molecular mass of 18 kDa homologous protein. Neurosci Lett. 2003; 343: 134–8.
  • Ong YC, Boyle JP, Boothroyd JC. Strain-dependent host transcriptional responses to Toxoplasma infection are largely conserved in mammalian and avian hosts. PLoS One. 2011; 6: e26369.
  • Zeiner GM, Norman KL, Thomson JM, Hammond SM, Boothroyd JC. Toxoplasma gondii infection specifically increases the levels of key host microRNAs. PLoS One. 2010; 5: e8742.
  • Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, Nutman TB. Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood. 2003; 102: 672–81.
  • Ma X, Fei E, Fu C, Ren H, Wang G. Dysbindin-1, a schizophrenia-related protein, facilitates neurite outgrowth by promoting the transcriptional activity of p53. Mol Psychiatry. 2011; 16: 1105–16.
  • Wang HJ, Guo YQ, Tan G, Dong L, Cheng L, Li KJ. MiR-125b regulates side population in breast cancer and confers a chemoresistant phenotype. J Cell Biochem. 2013; 114 :2248–57.
  • Cui F, Li X, Zhu X, Huang L, Huang Y, Mao C, etal. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol Biochem. 2012; 30: 1310–18.
  • Glud M, Manfe V, Biskup E, Holst L, Dirksen AM, Hastrup N, etal. MicroRNA miR-125b induces senescence in human melanoma cells. Melanoma Res. 2011; 21: 253–6.
  • Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y, etal. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nat Med. 2012; 18: 1077–86.
  • Pellegrino L, Stebbing J, Braga VM, Frampton AE, Jacob J, Buluwela L, etal. miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucleic Acids Res. 2013; 41: 5400–12.
  • Torres A, Torres K, Pesci A, Ceccaroni M, Paszkowski T, Cassandrini P, etal. Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. Int J Cancer. 2013; 132: 1633–45.
  • Ohyagi-Hara C, Sawada K, Kamiura S, Tomita Y, Isobe A, Hashimoto K, etal. miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin alpha5 expression. Am J Pathol. 2013; 182: 1876–89.
  • Lai L, Song Y, Liu Y, Chen Q, Han Q, Chen W, etal. MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem. 2013; 288: 7956–67.
  • Yoshizawa S, Ohyashiki JH, Ohyashiki M, Umezu T, Suzuki K, Inagaki A, etal. Downregulated plasma miR-92a levels have clinical impact on multiple myeloma and related disorders. Blood Cancer J. 2012; 2: e53.
  • Niu H, Wang K, Zhang A, Yang S, Song Z, Wang W, etal. miR-92a is a critical regulator of the apoptosis pathway in glioblastoma with inverse expression of BCL2L11. Oncol Rep. 2012; 28: 1771–7.
  • Gu Y, Zhang Y, Zhao C, Pan Y, Smales R, Wang H. Serum microRNAs as potential biomarkers of mandibular prognathism. Oral Dis. 2013. [Epub ahead of print].
  • Maes OC, Sarojini H, Wang E. Stepwise up-regulation of microRNA expression levels from replicating to reversible and irreversible growth arrest states in WI-38 human fibroblasts. J Cell Physiol. 2009; 221: 109–19.
  • Kappelmann M, Kuphal S, Meister G, Vardimon L, Bosserhoff AK. MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene. 2013; 32: 2984–91.
  • Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F, etal. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res. 2011; 17: 2725–33.
  • Jiang L, Huang Q, Chang J, Wang E, Qiu X. MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in lung cancer cells. Exp Lung Res. 2011; 37: 387–98.
  • Zhou B, Ma R, Si W, Li S, Xu Y, Tu X, etal. MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett. 2013; 333: 159–69.
  • Yan Q, Li W, Tang Q, Yao S, Lv Z, Feng N, etal. Cellular microRNAs 498 and 320d regulate herpes simplex virus 1 induction of Kaposi's sarcoma-associated herpes virus lytic replication by targeting RTA. PLoS One. 2013; 8: e55832.
  • Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, etal. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011; 71: 1313–s24.
  • Li D, Liu X, Lin L, Hou J, Li N, Wang C, etal. MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem. 2011; 286: 36677–85.