2,366
Views
62
CrossRef citations to date
0
Altmetric
Special Issue: Extracellular RNA communication Consortium

Extracellular RNAs: development as biomarkers of human disease

, , , , , , , , , , , , , , , , , & show all
Article: 27495 | Received 02 Apr 2015, Accepted 07 Aug 2015, Published online: 28 Aug 2015

References

  • Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C et al. Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathol. 2014; 128: 639–50.
  • Braconi C, Henry JC, Kogure T, Schmittgen T, Patel T. The role of microRNAs in human liver cancers. Semin Oncol. 2011; 38: 752–63.
  • Shibata C, Otsuka M, Kishikawa T, Ohno M, Yoshikawa T, Takata A et al. Diagnostic and therapeutic application of noncoding RNAs for hepatocellular carcinoma. World J Hepatol. 2015; 7: 1–6.
  • Takahashi K, Yan I, Wen HJ, Patel T. microRNAs in liver disease: from diagnostics to therapeutics. Clin Biochem. 2013; 46: 946–52.
  • St John MA, Li Y, Zhou X, Denny P, Ho CM, Montemagno C et al. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004; 130: 929–35.
  • Li Y, Zhou X, St John MA, Wong DT. RNA profiling of cell-free saliva using microarray technology. J Dent Res. 2004; 83: 199–203.
  • Lee YH, Zhou H, Reiss JK, Yan X, Zhang L, Chia D et al. Direct saliva transcriptome analysis. Clin Chem. 2011; 57: 1295–302.
  • Ai J, Smith B, Wong DT. Saliva ontology: an ontology-based framework for a Salivaomics Knowledge Base. BMC Bioinformatics. 2010; 11: 302.
  • Park NJ, Li Y, Yu T, Brinkman BM, Wong DT. Characterization of RNA in saliva. Clin Chem. 2006; 52: 988–94.
  • Park NJ, Zhou X, Yu T, Brinkman BM, Zimmermann BG, Palanisamy V et al. Characterization of salivary RNA by cDNA library analysis. Arch Oral Biol. 2007; 52: 30–5.
  • Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009; 15: 5473–7.
  • Spielmann N, Ilsley D, Gu J, Lea K, Brockman J, Heater S et al. The human salivary RNA transcriptome revealed by massively parallel sequencing. Clin Chem. 2012; 58: 1314–21.
  • Li Y, St John MA, Zhou X, Kim Y, Sinha U, Jordan RC et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res. 2004; 10: 8442–50.
  • Hu S, Wang J, Meijer J, Ieong S, Xie Y, Yu T et al. Salivary proteomic and genomic biomarkers for primary Sjogren's syndrome. Arthritis Rheum. 2007; 56: 3588–600.
  • Zhang L, Farrell JJ, Zhou H, Elashoff D, Akin D, Park NH et al. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology. 2010; 138: 949–57.
  • Zhang L, Xiao H, Karlan S, Zhou H, Gross J, Elashoff D et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS One. 2010; 5: e15573.
  • Xiao H, Zhang L, Zhou H, Lee JM, Garon EB, Wong DT. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol Cell Proteomics. 2012; 11: M111.012112.
  • Lee YH, Kim JH, Zhou H, Kim BW, Wong DT. Salivary transcriptomic biomarkers for detection of ovarian cancer: for serous papillary adenocarcinoma. J Mol Med. 2012; 90: 427–34.
  • Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y et al. The landscape of microRNA, piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015; 61: 221–30.
  • McMurray JJ. Clinical practice. Systolic heart failure. New Engl J Med. 2010; 362: 228–38.
  • Goldenberg I, Moss AJ, Hall WJ, Foster E, Goldberger JJ, Santucci P et al. Predictors of response to cardiac resynchronization therapy in the Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT). Circulation. 2011; 124: 1527–36.
  • Shah RV, Altman RK, Park MY, Zilinski J, Leyton-Mange J, Orencole M et al. Usefulness of hemoglobin A(1c) to predict outcome after cardiac resynchronization therapy in patients with diabetes mellitus and heart failure. Am J Cardiol. 2012; 110: 683–8.
  • Lellouche N, De Diego C, Cesario DA, Vaseghi M, Horowitz BN, Mahajan A et al. Usefulness of preimplantation B-type natriuretic peptide level for predicting response to cardiac resynchronization therapy. Am J Cardiol. 2007; 99: 242–6.
  • Altman RK, Parks KA, Schlett CL, Orencole M, Park MY, Truong QA et al. Multidisciplinary care of patients receiving cardiac resynchronization therapy is associated with improved clinical outcomes. Eur Heart J. 2012; 33: 2181–8.
  • Kass DA. Pathobiology of cardiac dyssynchrony and resynchronization. Heart Rhythm. 2009; 6: 1660–5.
  • Ryu S, Joshi N, McDonnell K, Woo J, Choi H, Gao D et al. Discovery of novel human breast cancer microRNAs from deep sequencing data by analysis of pri-microRNA secondary structures. PLoS One. 2011; 6: e16403.
  • Oliveira-Carvalho V, Silva MM, Guimaraes GV, Bacal F, Bocchi EA. MicroRNAs: new players in heart failure. Mol Biol Rep. 2013; 40: 2663–70.
  • Tijsen AJ, Pinto YM, Creemers EE. Non-cardiomyocyte microRNAs in heart failure. Cardiovasc Res. 2012; 93: 573–82.
  • Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010; 106: 1035–9.
  • Tijsen AJ, Pinto YM, Creemers EE. Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2012; 303: H1085–95.
  • Topkara VK, Mann DL. Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther. 2011; 25: 171–82.
  • Divakaran V, Mann DL. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 2008; 103: 1072–83.
  • Orenes-Pinero E, Montoro-Garcia S, Patel JV, Valdes M, Marin F, Lip GY. Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol. 2013; 167: 1651–9.
  • Sonnen JA, Montine KS, Quinn JF, Breitner JC, Montine TJ. Cerebrospinal fluid biomarkers in mild cognitive impairment and dementia. J Alzheimer's Dis. 2010; 19: 301–9.
  • Li G, Sokal I, Quinn JF, Leverenz JB, Brodey M, Schellenberg GD et al. CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology. 2007; 69: 631–9.
  • Bekris LM, Lutz F, Montine TJ, Yu CE, Tsuang D, Peskind ER et al. MicroRNA in Alzheimer's disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers. 2013; 18: 455–66.
  • Sala Frigerio C, Lau P, Salta E, Tournoy J, Bossers K, Vandenberghe R et al. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology. 2013; 81: 2103–6.
  • Tan L, Yu JT, Tan MS, Liu QY, Wang HF, Zhang W et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer's disease. J Alzheimer's Dis. 2014; 40: 1017–27.
  • Geekiyanage H, Jicha GA, Nelson PT, Chan C. Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease. Exp Neurol. 2012; 235: 491–6.
  • Delay C, Mandemakers W, Hebert SS. MicroRNAs in Alzheimer's disease. Neurobiol Dis. 2012; 46: 285–90.
  • Peskind ER, Riekse R, Quinn JF, Kaye J, Clark CM, Farlow MR et al. Safety and acceptability of the research lumbar puncture. Alzheimer Dis Assoc Disord. 2005; 19: 220–5.
  • Darefsky AS, King JT Jr., Dubrow R. Adult glioblastoma multiforme survival in the temozolomide era: a population-based analysis of Surveillance, Epidemiology, and End Results registries. Cancer. 2012; 118: 2163–72.
  • Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010; 17: 510–22.
  • Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA. 1992; 89: 2965–9.
  • Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res. 2005; 11: 1462–6.
  • Bleeker FE, Atai NA, Lamba S, Jonker A, Rijkeboer D, Bosch KS et al. The prognostic IDH1 (R132) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol. 2010; 119: 487–94.
  • Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM et al. Limitations of stereotactic biopsy in the initial management of gliomas. Neuro Oncol. 2001; 3: 193–200.
  • Nickel GC, Barnholtz-Sloan J, Gould MP, McMahon S, Cohen A, Adams MD et al. Characterizing mutational heterogeneity in a glioblastoma patient with double recurrence. PLoS One. 2012; 7: e35262.
  • Vuorinen V, Hinkka S, Farkkila M, Jaaskelainen J. Debulking or biopsy of malignant glioma in elderly people – a randomised study. Acta Neurochir. 2003; 145: 5–10.
  • Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M et al. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Can Res. 2008; 14: 2900–8.
  • Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res. 2009; 15: 4622–9.
  • Fischer I, Cunliffe CH, Bollo RJ, Raza S, Monoky D, Chiriboga L et al. High-grade glioma before and after treatment with radiation and Avastin: initial observations. Neuro Oncol. 2008; 10: 700–8.
  • Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL et al. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery. 2002; 51: 912–19.
  • Hochberg FH, Atai NA, Gonda D, Hughes MS, Mawejje B, Balaj L et al. Glioma diagnostics and biomarkers: an ongoing challenge in the field of medicine and science. Expert Rev Mol Diagn. 2014; 14: 439–52.
  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010; 17: 98–110.
  • Lechapt-Zalcman E, Levallet G, Dugue AE, Vital A, Diebold MD, Menei P et al. O(6) -methylguanine-DNA methyltransferase (MGMT) promoter methylation and low MGMT-encoded protein expression as prognostic markers in glioblastoma patients treated with biodegradable carmustine wafer implants after initial surgery followed by radiotherapy with concomitant and adjuvant temozolomide. Cancer. 2012; 118: 4545–54.
  • Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest. 2010; 90: 144–55.
  • Akers JC, Ramakrishnan V, Kim R, Skog J, Nakano I, Pingle S et al. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One. 2013; 8: e78115.
  • Masui K, Cloughesy TF, Mischel PS. Review: molecular pathology in adult high-grade gliomas: from molecular diagnostics to target therapies. Neuropathol Appl Neurobiol. 2012; 38: 271–91.
  • Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010; 28: 4722–9.
  • Pelloski CE, Ballman KV, Furth AF, Zhang L, Lin E, Sulman EP et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol. 2007; 25: 2288–94.
  • Butler WE, Atai N, Carter B, Hochberg F. Informatic system for a global tissue-fluid biorepository with a graph theory-oriented graphical user interface. J Extracell Vesicles. 2014; 3: 24247. doi: http://dx.doi.org/10.3402/jev.v3.24247.
  • Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008; 10: 1470–6.
  • Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012; 18: 1835–40.
  • Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA et al. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids. 2013; 2: e109.
  • Ramakrishnan V, Kushwaha D, Koay DC, Reddy H, Mao Y, Zhou L et al. Post-transcriptional regulation of O(6)-methylguanine-DNA methyltransferase MGMT in glioblastomas. Cancer Biomark. 2011; 10: 185–93.
  • Kushwaha D, Ramakrishnan V, Ng K, Steed T, Nguyen T, Futalan D et al. A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas. Oncotarget. 2014; 5: 4026–39.
  • Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009; 23: 1494–504.
  • Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013; 2: 20677. doi: http://dx.doi.org/10.3402/jev.v2i0.20677.
  • Casalini P, Iorio MV. MicroRNAs and future therapeutic applications in cancer. J BUON. 2009; 14(Suppl 1): S17–22.
  • Rosa A, Brivanlou AH. MicroRNAs in early vertebrate development. Cell Cycle. 2009; 8: 3513–20.
  • Kosik KS. The neuronal microRNA system. Nat Rev Neurosci. 2006; 7: 911–20.
  • Fineberg SK, Kosik KS, Davidson BL. MicroRNAs potentiate neural development. Neuron. 2009; 64: 303–9.
  • Lei P, Li Y, Chen X, Yang S, Zhang J. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res. 2009; 1284: 191–201.
  • Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009; 29: 675–87.
  • Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis. 2010; 38: 17–26.
  • Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW et al. Expression profile of microRNAs in young stroke patients. PLoS One. 2009; 4: e7689.
  • Meislin AG, Rothfield N. Systemic lupus erythematosus. Pediatrics. 1969; 43: 473–5.
  • Mok CC, Kwok RC, Yip PS. Effect of renal disease on the standardized mortality ratio and life expectancy of patients with systemic lupus erythematosus. Arthritis Rheum. 2013; 65: 2154–60.
  • Goilav B, Ben-Dov IZ, Blanco I, Wahezi D, Loudig O, Putterman C. Deep-sequencing reveals WHO class-specific urinary microRNAs in human lupus nephritis. Washington, DC: Pediatric Academic Societies Meeting. 2013 May 4–7.
  • Becton L, Putterman C, Loudig O, Ramnauth A, Ben-Dov IZ, Pawar RD. MicroRNA profiling in the nephrotoxic serum nephritis model. San Diego, CA: Pediatric Academic Societies Meeting. 2015 Apr 25–28.