1,508
Views
24
CrossRef citations to date
0
Altmetric
Special Issue: Extracellular RNA communication Consortium

Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium

, , , , , , , , , , , , , , , , , , , & show all
Article: 27575 | Received 13 Feb 2015, Accepted 24 Jul 2015, Published online: 28 Aug 2015

References

  • Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30: 255–89. doi: 10.1146/annurev-cellbio-101512-122326..
  • Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013; 2 20389, doi: http://dx.doi.org/10.3402/jev.v2i0.20389.
  • Lee TH, D'Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J. Microvesicles as mediators of intercellular communication in cancer-the emerging science of cellular ‘debris’. Semin Immunopathol. 2011; 33: 455–67.
  • Quesenberry PJ, Aliotta JM. Cellular phenotype switching and microvesicles. Adv Drug Deliv Rev. 2010; 62: 1141–8.
  • Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012; 22: 125–32.
  • Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014; 3 doi: 10.3402/jev.v3.26913.. eCollection 2014
  • Escudier B, Dorval T, Chaput N, André F, Caby MP, Novault S et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med. 2005; 3: 10.
  • Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005; 3: 9.
  • Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res. 2014; 58: 1561–73.
  • Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013; 21: 1345–57.
  • Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014; 22: 522–34. doi: 10.1038/mt.2013.190.
  • Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015; 5: 2520–9. doi: 10.1158/0008-5472.CAN-14-3095.
  • Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013; 4: 1867.
  • Le Blanc K, Pittenger MF. Mesenchymal stem cells: progress toward promise. Cytotherapy. 2005; 7: 36–45.
  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143–7.
  • Cantaluppi V, Biancone L, Quercia A, Deregibus MC, Segoloni G, Camussi G. Rationale of mesenchymal stem cell therapy in kidney injury. Am J Kidney Dis. 2013; 61: 300–9.
  • Sharma RR, Pollock K, Hubel A, McKenna D. Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion. 2014; 54: 1418–37.
  • Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009; 20: 1053–67.
  • Grange C, Tapparo M, Bruno S, Chatterjee D, Quesenberry PJ, Tetta C et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med. 2014; 33: 1055–63.
  • Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 2013; 22: 772–80.
  • Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013; 4: 34.
  • He J, Wang Y, Sun S, Yu M, Wang C, Pei X et al. Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton). 2012; 17: 493–500.
  • Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P et al. Acute kidney injury recovery induced by extracellular vesicles carrying miRNAs. J Am Soc Nephrol. 2015. [Epub ahead of print].
  • Lindoso RS, Collino F, Bruno S, Araujo DS, Sant'Anna JF, Tetta C et al. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury. Stem Cells Dev. 2014; 23: 1809–19.
  • Aliotta JM, Pereira M, Amaral A, Sorokina A, Igbinoba Z, Hasslinger A et al. Induction of pulmonary hypertensive changes by extracellular vesicles from monocrotaline-treated mice. Cardiovasc Res. 2013; 100: 354–62. doi: 10.1093/cvr/cvt184.
  • Arora R, Chawla R, Marwah R, Kumar V, Goel R, Arora P et al. Medical radiation countermeasures for nuclear and radiological emergencies: current status and future perspectives. J Pharm Bioallied Sci. 2012; 2: 202–12.
  • Williams JP, Brown SL, Georges GE, Hauer-Jensen M, Hill RP, Huser AK et al. Animal models for medical countermeasures to radiation exposure. Radiat Res. 2010; 173: 557–78.
  • Stewart FM, Zhong S, Lambert JF, Colvin GA, Abedi M, Dooner MS et al. Host marrow stem cell potential and engraftability at varying times after low-dose whole-body irradiation. Blood. 2001; 98: 1246–51.
  • Asano S. Current status of hematopoietic stem cell transplantation for acute radiation syndromes. Int J Hematol. 2012; 95: 227–31.
  • Doan PL, Himburg HA, Helms K, Russell JL, Fixsen E, Quarmyne M et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med. 2013; 19: 295–304.
  • Herodin F, Drouet M. Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp Hematol. 2005; 33: 1071–80.
  • Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974; 17: 331–40.
  • Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008; 8: 726–36.
  • Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G. Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant. 2012; 27: 3037–42.
  • Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006; 98: 1076–84.
  • Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L et al. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumour effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant. 2010; 16: 838–47.
  • Chen YZ, Lin F, Zhuang GB, Ren Y, Li PP. Protective effect of Renshen Yangrong Decoction on bone marrow against radiation injury in mouse. Chin J Integr Med. 2011; 17: 453–8.
  • Hiwase SD, Dyson PG, To LB, Lewis ID. Cotransplantation of placental mesenchymal stromal cells enhances single and double cord blood engraftment in nonobese diabetic/severe combined immune deficient mice. Stem Cells. 2009; 27: 2293–300.
  • Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, Eggert K, Gehling UM, Rudolph C et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One. 2011; 6: e14486.
  • Qiao S, Ren H, Shi Y, Liu W. Allogeneic compact bone-derived mesenchymal stem cell transplantation increases survival of mice exposed to lethal total body irradiation: a potential immunological mechanism. Chin Med J. 2014; 127: 475–82.
  • Yang X, Balakrishnan I, Torok-Storb B, Pillai MM. Marrow stromal cell infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. Adv Hematol. 2012; 2012: 142530.
  • Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010; 4: 214–22.
  • Reis LA, Borges FT, Simoes MJ, Borges AA, Sinigaglia-Coimbra R, Schor N. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One. 2012; 7: e44092.
  • Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012; 30: 1556–64.
  • Quesenberry PJ, Goldberg LR, Aliotta JM, Dooner MS, Pereira MG, Wen S et al. Cellular phenotype and extracellular vesicles: basic and clinical considerations. Stem Cells Dev. 2014; 2313: 1429–36. doi: 10.1089/scd.2013.0594.
  • Pusic AD, Pusic KM, Clayton BLL, Kraig RP. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. J Neuroimmunol. 2014; 266: 12–23. doi: 10.1016/j.jneuroim.2013.10.014.
  • Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010; 18: 1606–14.
  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011; 29: 341–5. doi: 10.1038/nbt.1807.
  • Rountree RB, Mandl SJ, Nachtwey JM, Dalpozzo K, Do L, Lombardo JR et al. Exosome targeting of tumour antigens expressed by cancer vaccines can improve antigen immunogenicity and therapeutic efficacy. Cancer Res. 2011; 71: 5235–44. doi: 10.1158/0008-5472.CAN-10-4076.
  • Hartman ZC, Wei J, Glass OK, Guo H, Lei G, Yang X-Y et al. Increasing vaccine potency through exosome antigen targeting. Vaccine. 2011; 29: 9361–7. doi: 10.1016/j.vaccine.2011.09.133.
  • Pusic AD, Kraig RP. Youth and environmental enrichment generate serum exosomes containing miR-219 that promotes CNS myelination. Glia. 2014; 62: 284–99. doi: 10.1002/glia.22606.
  • Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron. 2010; 65: 597–611. doi: 10.1016/j.neuron.2010.01.027.
  • Zhao X, He X, Han X, Yu Y, Ye F, Chen Y et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron. 2010; 65: 612–26. doi: 10.1016/j.neuron.2010.02.018.
  • Capaldi D, Ackley K, Brooks D, Carmody J, Draper K, Kambhampati R et al. Quality aspects of oligonucleotide drug development: specifications for active pharmaceutical ingredients. Drug Inform J. 2012; 46: 611–26.
  • Lee S-L, Brown P, Wang J, Dorsam RT. Cheng K, Mahato RI. Nonclinical safety assessments and clinical pharmacokinetics for oligonucleotide therapeutics: a regulatory perspective. Advanced delivery and therapeutic applications of RNAi. 2013; Chichester, UK: John Wiley and Sons, Ltd. doi: 10.1002/9781118610749.ch4.
  • Srivatsa GS. Oligonucleotide regulatory challenges. Eur Biopharm Rev. 2012
  • Goodier JL, Kazazian HH Jr.. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell. 2008; 135: 23–35.
  • Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009; 1: 239–59.
  • Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I, Bagnoli F et al. Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol. 2008; 82: 9329–36.
  • Contreras-Galindo RA, Kaplan MH, Contreras-Galindo AC, Gonzalez-Hernandez MJ, Ferlenghi I, Giusti F et al. Characterization of human endogenous retroviral elements in the blood of HIV-1-infected individuals. J Virol. 2012; 86: 262–76.
  • Nolte-‘t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, t‘Hoen PA. . Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012; 40: 9272–85.
  • Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011; 2: 180.
  • Wurdinger T, Gatson NN, Balaj L, Kaur B, Breakefield XO, Pegtel DM. Extracellular vesicles and their convergence with viral pathways. Adv Virol. 2012; 2012: 767694.
  • Silverman JM, Reiner NE. Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol. 2011; 13: 1–9.
  • De Gassart A, Trentin B, Martin M, Hocquellet A, Bette-Bobillo P, Mamoun R et al. Exosomal sorting of the cytoplasmic domain of bovine leukemia virus TM Env protein. Cell Biol Int. 2009; 33: 36–48.
  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9: 654–9.
  • Abdel Mageed ZY, Yang Y, Thomas R, Ranjan M, Mondal D, Moroz K et al. Neoplastic reprogramming of patient derived adipose stem cells by prostate cancer cell-associated exosomes. Stem Cells. 2014; 32: 983–97.
  • Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M et al. BM mesenchymal stromal cell derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013; 123: 1542–55.
  • Cho JA, Park H, Lim EH, Kim KH, Choi JS, Lee JH et al. Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumour-supporting myofibroblasts. Gynecol Oncol. 2011; 123: 379–86.
  • Cho JA, Park H, Lim EH, Lee KW. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 2012; 40: 130–8.
  • Garnier D, Magnus N, Lee TH, Bentley V, Meehan B, Milsom C et al. Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. J Biol Chem. 2012; 287: 43565–72.
  • Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al. Melanoma exosomes educate bone marrow progenitor cells toward a prometastatic phenotype through MET. Nat Med. 2012; 18: 883–91.
  • Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008; 10: 1470–6.
  • Filipazzi P, Burdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumour exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012; 22: 342–9. doi: 10.1016/j.semcancer.2012.02.005.
  • Ichim TE, Zhong Z, Kaushal S, Zheng X, Ren X et al. Exosomes as a tumour immune escape mechanism: possible therapeutic implications. J Transl Med. 2008; 6: 37. doi: 10.1186/1479-5876-6-37.
  • Lundholm M, Schröder M, Nagaeva O, Baranov V, Widmark A, Mincheva-Nilsson L et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One. 2014; 9: e108925.
  • Kim J, Morley S, Le M, Bedoret D, Umetsu DT, Di Vizio D et al. Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells: potential effects on the tumour microenvironment. Cancer Biol Ther. 2014; 15: 409–18.
  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science. 2013; 339: 1546–58.
  • Shifrin DA Jr., Demory Beckler M, Coffey RJ, Tyska MJ. Extracellular vesicles: communication, coercion, and conditioning. Mol Biol Cell. 2013; 24: 1253–9.
  • Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science. 1993; 260: 85–8.
  • Higginbotham JN, Demory Beckler M, Gephart JD, Franklin JL, Bogatcheva G, Kremers GJ et al. Amphiregulin exosomes increase cancer cell invasion. Curr Biol. 2011; 21: 779–86.
  • Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE et al. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics. 2013; 12: 343–55.
  • Choi DS, Choi DY, Hong BS, Jang SC, Kim DK, Lee J et al. Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells. J Extracell Vesicles. 2012; 1 18704, doi: http://dx.doi.org/10.3402/jev.v1i0.18704.
  • Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A et al. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics. 2013; 13: 1672–86.
  • Zhang HH, Walker F, Kiflemariam S, Whitehead RH, Williams D, Phillips WA et al. Selective inhibition of proliferation in colorectal carcinoma cell lines expressing mutant APC or activated B-Raf. Int J Cancer. 2009; 125: 297–307.
  • Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012; 56: 293–304.
  • Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics. 2010; 9: 197–208.
  • Ji H, Greening DW, Kapp EA, Moritz RL, Simpson RJ. Secretome-based proteomics reveals sulindac-modulated proteins released from colon cancer cells. Proteomics Clin Appl. 2009; 3: 433–51.
  • Bernhard OK, Greening DW, Barnes TW, Ji H, Simpson RJ. Detection of cadherin-17 in human colon cancer LIM1215 cell secretome and tumour xenograft derived interstitial fluid and plasma. Biochim Biophys Acta. 2013; 1834: 2372–9.
  • Choi DS, Yang JS, Choi EJ, Jang SC, Park S, Kim OY et al. The protein interaction network of extracellular vesicles derived from human colorectal cancer cells. J Proteome Res. 2012; 11: 1144–51.
  • Lee SH, Lee SJ, Chung JY, Jung YS, Choi SY, Hwang SH et al. p53, secreted by K-Ras-Snail pathway, is endocytosed by K-Ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker. Oncogene. 2009; 28: 2005–14.
  • Rappa G, Mercapide J, Anzanello F, Pope RM, Lorico A. Biochemical and biological characterization of exosomes containing prominin-1/CD133. Mol Cancer. 2013; 12: 62.
  • Jimenez CR, Knol JC, Meijer GA, Fijneman RJ. Proteomics of colorectal cancer: overview of discovery studies and identification of commonly identified cancer-associated proteins and candidate CRC serum markers. J Proteomics. 2010; 73: 1873–95.
  • Mathias RA, Lim JW, Ji H, Simpson RJ. Isolation of extracellular membranous vesicles for proteomic analysis. Methods Mol Biol. 2009; 528: 227–42.
  • Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014; 3: 25011.
  • Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics. 2013; 12: 587–98.
  • Vickers KC, Remaley AT. Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol. 2012; 23: 91–7.
  • McConnell RE, Higginbotham JN, Shifrin DA Jr., Tabb DL, Coffey RJ, Tyska MJ. The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol. 2009; 185: 1285–98.
  • Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008; 8: 4083–99.
  • Arroyo D, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011; 108: 5003–8.
  • Shen B, Wu N, Yang JM, Gould SJ. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem. 2011; 286: 14383–95.
  • Waldenstrom A, Genneback N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain dna/rna and convey biological messages to target cells. PLoS One. 2012; 7: 7.
  • Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A et al. Cardiac fibroblast-derived microrna passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014; 124: 2136–214.
  • Gupta S, Knowlton AA. Hsp60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol. 2007; 292: H3052–6.
  • Yu X, Deng LY, Wang D, Li N, Chen X, Cheng X et al. Mechanism of TNF-alpha autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1 alpha, presented by exosomes. J Mol Cell Cardiol. 2012; 53: 848–85.