6,918
Views
215
CrossRef citations to date
0
Altmetric
Original Research Articles

Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content

, , , , , , , , , , , & show all
Article: 28533 | Received 14 May 2015, Accepted 06 Nov 2015, Published online: 07 Dec 2015

References

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lotvall J. Exosomes contain a selective number of mRNA and microRNA. Allergy. 2007; 62: S372.
  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9: 654–9.
  • Lazaro-Ibanez E, Sanz-Garcia A, Visakorpi T, Escobedo-Lucea C, Siljander P, Ayuso-Sacido A et al. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate. 2014; 74: 1379–90.
  • Kastelowitz N, Yin H. Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes. Chembiochem. 2014; 15: 923–8.
  • Bobrie A, Thery C. Exosomes and communication between tumours and the immune system: are all exosomes equal?. Biochem Soc Trans. 2013; 41: 263–7.
  • Beach A, Zhang HG, Ratajczak MZ, Kakar SS. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 2014; 7: 14.
  • Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014; 26: 707–21.
  • Liang Y, Eng WS, Colquhoun DR, Dinglasan RR, Graham DR, Mahal LK. Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment. J Biol Chem. 2014; 289: 32526–37.
  • Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010; 51: 2105–20.
  • Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 2004; 380: 161–71.
  • Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014; 3 26913, doi: http://dx.doi.org/10.3402/jev.v3.26913 [PubMed CentralFull Text].
  • Puppels GJ, Demul FFM, Otto C, Greve J, Robertnicoud M, Arndtjovin DJ et al. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature. 1990; 347: 301–3.
  • de Oliveira MAS, Smith ZJ, Knorr F, de Araujo RE, Wachsmann-Hogiu S. Long term Raman spectral study of power-dependent photodamage in red blood cells. Appl Phys Lett. 2014; 104: 103702.
  • Smith ZJ, Chang CW, Lawson LS, Lane SM, Wachsmann-Hogiu S. Precise monitoring of chemical changes through localization analysis of dynamic spectra (LADS). Appl Spectrosc. 2013; 67: 187–95.
  • Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci USA. 2005; 102: 12371–6.
  • Lieber CA, Majumder SK, Billheimer D, Ellis DL, Mahadevan-Jansen A. Raman microspectroscopy for skin cancer detection in vitro. J Biomed Opt. 2008; 13: 024013.
  • Schulmerich MV, Cole JH, Kreider JM, Esmonde-White F, Dooley KA, Goldstein SA et al. Transcutaneous Raman Spectroscopy of Murine Bone In Vivo. Appl Spectrosc. 2009; 63: 286–95.
  • Maher JR, Takahata M, Awad HA, Berger AJ. Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis. J Biomed Opt. 2011; 16: 087012.
  • Moritz TJ, Taylor DS, Polage CR, Krol DM, Lane SM, Chan JW. Raman spectroscopic signatures of the metabolic states of Escherichia coli cells and their dependence on antibiotics treatment. Biophys J. 2010; 98: 742A.
  • Berger AJ, Koo TW, Itzkan I, Horowitz G, Feld MS. Multicomponent blood analysis by near-infrared Raman spectroscopy. Appl Optics. 1999; 38: 2916–26.
  • Qi DH, Berger AJ. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. Appl Optics. 2007; 46: 1726–34.
  • Wachsmann-Hogiu S, Weeks T, Huser T. Chemical analysis in vivo and in vitro by Raman spectroscopy – from single cells to humans. Curr Opin Biotechnol. 2009; 20: 63–73.
  • Smith ZJ, Huser TR, Wachsmann-Hogiu S. Raman scattering in pathology. Anal Cell Pathol (Amst). 2012; 35: 145–63.
  • Chen K, Qin YJ, Zheng F, Sun MH, Shi DR. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells. Opt Lett. 2006; 31: 2015–17.
  • Chan JW, Taylor DS, Lane SM, Zwerdling T, Tuscano J, Huser T. Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. Anal Chem. 2008; 80: 2180–7.
  • Smith ZJ, Wang JCE, Quataert SA, Berger AJ. Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+T lymphocytes. J Biomed Opt. 2010; 15: 036021.
  • Argov N, Wachsmann-Hogiu S, Freeman SL, Huser T, Lebrilla CB, German JB. Size-dependent lipid content in human milk fat globules. J Agr Food Chem. 2008; 56: 7446–50.
  • Ajito K, Torimitsu K. Single nanoparticle trapping using a Raman Tweezers microscope. Appl Spectrosc. 2002; 56: 541–4.
  • Ajito K, Torimitsu K. Laser trapping and Raman spectroscopy of single cellular organelles in the nanometer range. Lab Chip. 2002; 2: 11–14.
  • Tatischeff I, Larquet E, Falcon-Perez JM, Turpin PY, Kruglik SG. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles. 2012; 1 19179, doi: http://dx.doi.org/10.3402/jev.v1i0.19179.
  • Beier BD. Thesis: confocal Raman microscpectroscopy of oral Streptococci. 2011. Institute of Optics. Rochester, NY, USA: University of Rochester.
  • Eilers PH. A perfect smoother. Anal Chem. 2003; 75: 3631–6.
  • Boelens HF, Dijkstra RJ, Eilers PH, Fitzpatrick F, Westerhuis JA. New background correction method for liquid chromatography with diode array detection, infrared spectroscopic detection and Raman spectroscopic detection. J Chromatogr A. 2004; 1057: 21–30.
  • Schie IW, Nolte L, Pedersen TL, Smith Z, Wu J, Yahiatene I et al. Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst. 2013; 138: 6662–70.
  • Gniadecka M, Philipsen PA, Sigurdsson S, Wessel S, Nielsen OF, Christensen DH et al. Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. J Invest Dermatol. 2004; 122: 443–9.
  • Tirinato L, Gentile F, Di Mascolo D, Coluccio ML, Das G, Liberale C et al. SERS analysis on exosomes using super-hydrophobic surfaces. Microelectron Eng. 2012; 97: 337–40.
  • Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006. Chapter 3:Unit 3 22.
  • Shelke GV, Lasser C, Gho YS, Lotvall J. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2014; 3 24783, doi: http://dx.doi.org/10.3402/jev.v3.24783 [PubMed CentralFull Text].
  • Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013; 7: 7698–710.
  • Boing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014; 3 23430, doi: http://dx.doi.org/10.3402/jev.v3.23430 [PubMed CentralFull Text].
  • Webber J, Clayton A. How pure are your vesicles?. J Extracell Vesicles. 2013; 2 19861, doi: http://dx.doi.org/10.3402/jev.v2i0.19861.
  • Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomed-Nanotechnol. 2011; 7: 780–8.
  • Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010; 27: 796–810.
  • Maas SL, de Vrij J, van der Vlist EJ, Geragousian B, van Bloois L, Mastrobattista E et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release. 2015; 200: 87–96.
  • Krafft C, Neudert L, Simat T, Salzer R. Near infrared Raman spectra of human brain lipids. Spectrochim Acta A. 2005; 61: 1529–35.
  • Naumann D. Infrared and NIR Raman spectroscopy in medical microbiology. Proc Soc Photo-Opt Ins. 1998; 3257: 245–57.
  • Miura T, Takeuchi H, Harada I. Characterization of individual tryptophan side-chains in proteins using Raman-spectroscopy and hydrogen-deuterium exchange kinetics. Biochemistry. 1988; 27: 88–94.
  • Edwards HGM, Farwell DW, Williams AC, Barry BW, Rull F. Novel spectroscopic deconvolution procedure for complex biological-systems – vibrational components in the Ft-Raman spectra of ice-man and contemporary skin. J Chem Soc Faraday Trans. 1995; 91: 3883–7.
  • Notingher I, Verrier S, Haque S, Polak JM, Hench LL. Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells. Biopolymers. 2003; 72: 230–40.
  • Nijssen A, Schut TCB, Heule F, Caspers PJ, Hayes DP, Neumann MHA et al. Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J Invest Dermatol. 2002; 119: 64–9.
  • Huang ZW, McWilliams A, Lui H, McLean DI, Lam S, Zeng HS. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer. 2003; 107: 1047–52.
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013; 200: 373–83.
  • Buschman HP, Deinum G, Motz JT, Fitzmaurice M, Kramer JR, van der Laarse A et al. Raman microspectroscopy of human coronary atherosclerosis: biochemical assessment of cellular and extracellular morphologic structures in situ. Cardiovasc Pathol. 2001; 10: 69–82.
  • Rodriguez J, Gupta N, Smith RD, Pevzner PA. Does trypsin cut before proline?. J Proteome Res. 2008; 7: 300–5.
  • Huang HL, Hsing HW, Lai TC, Chen YW, Lee TR, Chan HT et al. Trypsin-induced proteome alteration during cell subculture in mammalian cells. J Biomed Sci. 2010; 17: 36.
  • Lee C, Carney RP, Hazari S, Smith ZJ, Knudson A, Robertson CS et al. 3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale. 2015; 7: 9290–7.
  • Kong LB, Chan J. A rapidly modulated multifocal detection scheme for parallel acquisition of Raman spectra from a 2-D focal array. Anal Chem. 2014; 86: 6604–9.
  • Smith ZJ, Strombom S, Wachsmann-Hogiu S. Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy. Opt Express. 2011; 19: 16950–62.
  • Kosmeier S, Zolotovskaya S, De Luca AC, Riches A, Herrington CS, Dholakia K et al. Nonredundant Raman imaging using optical eigenmodes. Optica. 2014; 1: 257–63.
  • Wilcox DS, Buzzard GT, Lucier BJ, Wang P, Ben-Amotz D. Photon level chemical classification using digital compressive detection. Anal Chim Acta. 2012; 755: 17–27.
  • Davis BM, Hemphill AJ, Maltas DC, Zipper MA, Wang P, Ben-Amotz D. Multivariate hyperspectral Raman imaging using compressive detection. Anal Chem. 2011; 83: 5086–92.