1,374
Views
13
CrossRef citations to date
0
Altmetric
Original Research Articles

iSRAP – a one-touch research tool for rapid profiling of small RNA-seq data

, , , &
Article: 29454 | Received 16 Aug 2015, Accepted 14 Oct 2015, Published online: 12 Nov 2015

References

  • Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006; 15(Spec No. 1): 17–29.
  • Gesteland RF, Cech T, Atkins JF. The RNA world: the nature of modern RNA suggests a prebiotic RNA world. 3rd ed. 2006; Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 768 p.
  • Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961; 3: 318–56.
  • Lai EC. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002; 30: 363–4.
  • Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, etal. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005; 122: 553–63.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 281–97.
  • Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA. 2006; 103: 2746–51.
  • Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012; 40: 10937–49.
  • Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014; 3 23743, doi: http://dx.doi.org/10.3402/jev.v3.23743 [PubMed CentralFull Text].
  • Vella LJ. The emerging role of exosomes in epithelial–mesenchymal-transition in cancer. Front Oncol. 2014; 4: 361.
  • Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, etal. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. 2015; 34: 290–302.
  • Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, etal. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 2014; 7
  • Cheng L, Doecke JD, Sharples RA, Villemagne VL, Fowler CJ, Rembach A, etal. Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry. 2015; 20: 1188–96. doi: http://dx.doi.org/10.1038/mp.2014.127.
  • Vallelunga A, Ragusa M, Di Mauro S, Iannitti T, Pilleri M, Biundo R, etal. Identification of circulating microRNAs for the differential diagnosis of Parkinson's disease and multiple system atrophy. Front Cell Neurosci. 2014; 8: 156.
  • Cooper JM, Wiklander PB, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M, etal. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord. 2014; 29: 1476–85.
  • Linsen SE, de Wit E, Janssens G, Heater S, Chapman L, Parkin RK, etal. Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods. 2009; 6: 474–6.
  • Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, etal. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci USA. 2013; 110: 4255–60.
  • Denoeud F, Aury JM, Da Silva C, Noel B, Rogier O, Delledonne M, etal. Annotating genomes with massive-scale RNA sequencing. Genome Biol. 2008; 9: R175.
  • Creighton CJ, Reid JG, Gunaratne PH. Expression profiling of microRNAs by deep sequencing. Brief Bioinform. 2009; 10: 490–7.
  • Cheng L, Quek C, Sun X, Bellingham SA, Hill AF. Deep-sequencing of microRNA associated with Alzheimer's disease in biological fluids: from biomarker discovery to diagnostic practice. Front Genet. 2013; 4 :150..
  • Wu J, Liu Q, Wang X, Zheng J, Wang T, You M, etal. mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol. 2013; 10: 1087–92.
  • Zhu E, Zhao F, Xu G, Hou H, Zhou L, Li X, etal. mirTools: microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids Res. 2010; 38: W392–7.
  • Ronen R, Gan I, Modai S, Sukacheov A, Dror G, Halperin E, etal. miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics. 2010; 26: 2615–6.
  • Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, etal. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008; 26: 407–15.
  • An JY, Lai J, Lehman ML, Nelson CC. miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res. 2013; 41: 727–37.
  • Huang PJ, Liu YC, Lee CC, Lin WC, Gan RR, Lyu PC, etal. DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res. 2010; 38: W385–91.
  • Buermans HP, Ariyurek Y, van Ommen G, den Dunnen JT, t Hoen PA. New methods for next generation sequencing based microRNA expression profiling. BMC Genom. 2010; 11: 716.
  • Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM. miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res. 2009; 37: W68–76.
  • Mathelier A, Carbone A. MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics. 2010; 26: 2226–34.
  • Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS. miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics. 2009; 10: 328.
  • Humphreys DT, Suter CM. miRspring: a compact standalone research tool for analyzing miRNA-seq data. Nucleic Acids Res. 2013; 41: e147.
  • Giurato G, De Filippo MR, Rinaldi A, Hashim A, Nassa G, Ravo M, etal. iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq. BMC Bioinformatics. 2013; 14: 362.
  • Sun Z, Evans J, Bhagwate A, Middha S, Bockol M, Yan H, etal. CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data. BMC Genom. 2014; 15: 423.
  • Li Y, Zhang Z, Liu F, Vongsangnak W, Jing Q, Shen B. Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Res. 2012; 40: 4298–305.
  • Kleftogiannis D, Korfiati A, Theofilatos K, Likothanassis S, Tsakalidis A, Mavroudi S. Where we stand, where we are moving: surveying computational techniques for identifying miRNA genes and uncovering their regulatory role. J Biomed Inform. 2013; 46: 563–73.
  • Hoon S, Ratnapu KK, Chia JM, Kumarasamy B, Juguang X, Clamp M, etal. Biopipe: a flexible framework for protocol-based bioinformatics analysis. Genome Res. 2003; 13: 1904–15. [PubMed Abstract] [PubMed CentralFull Text].
  • Kumar S, Dudley J. Bioinformatics software for biologists in the genomics era. Bioinformatics. 2007; 23: 1713–7.
  • Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol. 2010; 11 (12):220..
  • Majer A, Caligiuri K, Booth S, Ying S-Y. A user-friendly computational workflow for the analysis of microRNA deep sequencing data. MicroRNA protocols. Methods in molecular biology. 2013; Totowa, NJ: Humana Press. 35–45.
  • Flicek P, Birney E. Sense from sequence reads: methods for alignment and assembly. Nat Methods. 2009; 6(11 Suppl): S6–12.
  • Caboche S, Audebert C, Lemoine Y, Hot D. Comparison of mapping algorithms used in high-throughput sequencing: application to Ion Torrent data. BMC Genom. 2014; 15: 264.
  • Merriman B, Rothberg JM. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis. 2012; 33: 3397–417.
  • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11: R25.
  • Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010; 11: 94.
  • Meyer SU, Pfaffl MW, Ulbrich SE. Normalization strategies for microRNA profiling experiments: a “normal” way to a hidden layer of complexity?. Biotechnol Lett. 2010; 32: 1777–88.
  • McCormick KP, Willmann MR, Meyers BC. Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence. 2011; 2: 2.
  • Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012; 13: 358–69.
  • Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, etal. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013; 14: 671–83.
  • Tam S, Tsao MS, McPherson JD. Optimization of miRNA-seq data preprocessing. Brief Bioinform. 2015. doi: http://dx.doi.org/10.1093/bib/bbv019.
  • Garmire LX, Subramaniam S. Evaluation of normalization methods in mammalian microRNA-seq data. RNA. 2012; 18: 1279–88.
  • Zhou X, Oshlack A, Robinson MD. miRNA-Seq normalization comparisons need improvement. RNA. 2013; 19: 733–4.
  • Hoss AG, Kartha VK, Dong XJ, Latourelle JC, Dumitriu A, Hadzi TC, etal. MicroRNAs located in the Hox gene clusters are implicated in Huntington's disease pathogenesis. PLoS Genet. 2014; 10: e1004188.
  • Coleman BM, Hanssen E, Lawson VA, Hill AF. Prion-infected cells regulate the release of exosomes with distinct ultrastructural features. FASEB J. 2012; 26: 4160–73.
  • Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, etal. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genom. 2013; 14: 319.
  • Yuan T, Huang X, Dittmar RL, Du M, Kohli M, Boardman L, etal. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing. BMC Genom. 2014; 15: 176.
  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006; 34: D140–4.
  • Chan PP, Lowe TM. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 2009; 37: D93–7.
  • Sai Lakshmi S, Agrawal S. piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res. 2008; 36: D173–7.
  • Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, etal. Ensembl 2013. Nucleic Acids Res. 2013; 41: D48–55.
  • Goodstadt L. Ruffus: a lightweight Python library for computational pipelines. Bioinformatics. 2010; 26: 2778–9.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30: 2114–20.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9: 357–9.
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, etal. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25: 2078–9.
  • Bioinformatics B. FASTQC: a quality control tool for high throughput sequence data. 2011; Cambridge, UK: Babraham Institute.
  • DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, etal. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012; 28: 1530–2.
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26: 841–2.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15: 550.
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26: 139–40.
  • Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014; 15: R29.
  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, etal. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43: e47.
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10: 57–63.
  • Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, etal. Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. 2010. Chapter 19:Unit 19.10.1–21.
  • Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, etal. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005; 15: 1451–5.
  • Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, etal. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 2010; 9: 1085–99.
  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9: 654–9.