5,206
Views
65
CrossRef citations to date
0
Altmetric
Review Articles

Phage therapy against Enterococcus faecalis in dental root canals

, , , , , & show all
Article: 32157 | Received 05 May 2016, Accepted 27 Jul 2016, Published online: 16 Sep 2016

References

  • Gradmann C. Re-inventing infectious disease: antibiotic resistance and drug development at the Bayer Company 1945–80. Med Hist. 2016; 60: 155–80.
  • Gradmann C. Magic bullets and moving targets: antibiotic resistance and experimental chemotherapy, 1900–1940. Dynamis. 2011; 31: 305–21.
  • Price NL, Goyette-Desjardins G, Nothaft H, Valguarnera E, Szymanski CM, Segura M, etal. Glycoengineered outer membrane vesicles: a novel platform for bacterial vaccines. Sci Rep. 2016; 6: 24931.
  • Drusano GL, Louie A, MacGowan A, Hope W. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry. Part 1. Antimicrob Agents Chemother. 2016; 60: 1183–93.
  • Drusano GL, Hope W, MacGowan A, Louie A. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, Part 2. Antimicrob Agents Chemother. 2016; 60: 1194–201.
  • O'Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015; 8: 217–30.
  • Yarlagadda V, Sarkar P, Samaddar S, Haldar J. A vancomycin derivative with a Pyrophosphate-Binding Group: a strategy to combat vancomycin-resistant bacteria. Angew Chem Int Ed Engl. 2016; 55: 7836–40.
  • Feng Y, Jonker MJ, Moustakas I, Brul S, Ter Kuile BH. Dynamics of mutations during development of resistance by Pseudomonas aeruginosa against five antibiotics. Antimicrob Agents Chemother. 2016; 60: 4229–36.
  • Durai R, Ng PC, Hoque H. Methicillin-resistant Staphylococcus aureus: an update. Aorn J. 2010; 91: 599–606. quiz 7–9.
  • Emami S, Nikokar I, Ghasemi Y, Ebrahimpour M, Sedigh Ebrahim-Saraie H, Araghian A, etal. Antibiotic resistance pattern and distribution of pslA Gene among biofilm producing Pseudomonas aeruginosa isolated from waste water of a burn center. Jundishapur J Microbiol. 2015; 8: e23669.
  • Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, etal. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011; 3: 55–65.
  • Bhinu VS. Insight into biofilm-associated microbial life. J Mol Microbiol Biotechnol. 2005; 10: 15–21.
  • Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009; 73: 310–47.
  • Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001; 45: 999–1007.
  • Romling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012; 272: 541–61.
  • Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002; 8: 881–90.
  • Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010; 35: 322–32.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; 15: 167–93.
  • Bradley CR, Fraise AP. Heat and chemical resistance of enterococci. J Hosp Infect. 1996; 34: 191–6.
  • Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 2002; 292: 107–13.
  • Aparna MS, Yadav S. Biofilms: microbes and disease. Braz J Infect Dis. 2008; 12: 526–30.
  • Schaudinn C, Gorur A, Keller D, Sedghizadeh PP, Costerton JW. Periodontitis: an archetypical biofilm disease. J Am Dent Assoc. 2009; 140: 978–86.
  • Ricucci D, Siqueira JF Jr. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod. 2010; 36: 1277–88.
  • Nair PN. On the causes of persistent apical periodontitis: a review. Int Endod J. 2006; 39: 249–81.
  • Mohammadi Z, Soltani MK, Shalavi S. An update on the management of endodontic biofilms using root canal irrigants and medicaments. Iran Endod J. 2014; 9: 89–97.
  • Pericas JM, Zboromyrska Y, Cervera C, Castaneda X, Almela M, Garcia-de-la-Maria C, etal. Enterococcal endocarditis revisited. Future Microbiol. 2015; 10: 1215–40.
  • Lebreton F, Willems RJL, Gilmore MS, Gilmore MS, Clewell DB, Ike Y, Shankar N. Enterococcus diversity, origins in nature, and gut colonization. Enterococci: from commensals to leading causes of Drug resistant infection. 2014; Boston: MA: Massachusetts Eye and Ear Infirmary. , PMID: 24649513.
  • Palmer KL, van Schaik W, Willems RJL, Gilmore MS, Gilmore MS, Clewell DB, Ike Y, Shankar N. Enterococcal genomics. Enterococci: from commensals to leading causes of drug resistant infection. 2014; Boston: MA: Massachusetts Eye and Ear Infirmary. , PMID: 24649511.
  • Ramsey M, Hartke A, Huycke M, Gilmore MS, Clewell DB, Ike Y, Shankar N. The physiology and metabolism of Enterococci. Enterococci: from commensals to leading causes of rug resistant infection . 2014; Boston: MA: Massachusetts Eye and Ear Infirmary. , PMID: 24649507.
  • Agudelo Higuita NI, Huycke MM. Gilmore MS, Clewell DB, Ike Y, Shankar N. Enterococcal disease, epidemiology, and implications for treatment. Enterococci: from commensals to leading causes of rug resistant infection . 2014; MA: Massachusetts Eye and Ear Infirmary: Boston. , PMID: 24649504.
  • Brito CS, Queiroz LL, Campos PA, Batistao DW, Silva Hde A, de Agostini GG, etal. The nares as a CA-MRSA reservoir in the healthy elderly. Rev Soc Bras Med Trop. 2015; 48: 614–16.
  • Coque TM, Patterson JE, Steckelberg JM, Murray BE. Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis. 1995; 171: 1223–9.
  • Lowe AM, Lambert PA, Smith AW. Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci. Infect Immun. 1995; 63: 703–6.
  • Eaton TJ, Gasson MJ. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol. 2001; 67: 1628–35.
  • Baeten JM, McClelland RS, Overbaugh J, Richardson BA, Emery S, Lavreys L, etal. Vitamin A supplementation and human immunodeficiency virus type 1 shedding in women: results of a randomized clinical trial. J Infect Dis. 2002; 185: 1187–91.
  • Theilacker C, Krueger WA, Kropec A, Huebner J. Rationale for the development of immunotherapy regimens against enterococcal infections. Vaccine. 2004; 22(Suppl 1): S31–8.
  • Mohamed JA, Huang DB. Biofilm formation by enterococci. J Med Microbiol. 2007; 56: 1581–8.
  • Guzman Prieto AM, van Schaik W, Rogers MR, Coque TM, Baquero F, Corander J, etal. Global emergence and dissemination of enterococci as nosocomial pathogens: attack of the clones?. Front Microbiol. 2016; 7: 788.
  • Sjogren U, Figdor D, Spangberg L, Sundqvist G. The antimicrobial effect of calcium hydroxide as a short-term intracanal dressing. Int Endod J. 1991; 24: 119–25.
  • Vivacqua-Gomes N, Gurgel-Filho ED, Gomes BP, Ferraz CC, Zaia AA, Souza-Filho FJ. Recovery of Enterococcus faecalis after single- or multiple-visit root canal treatments carried out in infected teeth ex vivo . Int Endod J. 2005; 38: 697–704.
  • Bystrom A, Sundqvist G. Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res. 1981; 89: 321–8.
  • Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, etal. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis . Antimicrob Agents Chemother. 1989; 33: 1588–91.
  • Huycke MM, Sahm DF, Gilmore MS. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis. 1998; 4: 239–49.
  • Miller WR, Murray BE, Rice LB, Arias CA. Vancomycin-resistant enterococci: therapeutic challenges in the 21st century. Infect Dis Clin North Am. 2016; 30: 415–39.
  • Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014; 157: 121–41.
  • Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012; 10: 266–78.
  • Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, etal. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature. 2008; 455: 804–7.
  • Park SY, Shin YP, Kim CH, Park HJ, Seong YS, Kim BS, etal. Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. J Immunol. 2008; 181: 6328–36.
  • Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus . Microbiology. 2009; 155: 1749–57.
  • Sedgley C, Buck G, Appelbe O. Prevalence of Enterococcus faecalis at multiple oral sites in endodontic patients using culture and PCR. J Endod. 2006; 32: 104–9.
  • Liu H, Wei X, Ling J, Wang W, Huang X. Biofilm formation capability of Enterococcus faecalis cells in starvation phase and its susceptibility to sodium hypochlorite. J Endod. 2010; 36: 630–5.
  • Saleh IM, Ruyter IE, Haapasalo M, Orstavik D. Survival of Enterococcus faecalis in infected dentinal tubules after root canal filling with different root canal sealers in vitro . Int Endod J. 2004; 37: 193–8.
  • Hayakawa K, Marchaim D, Palla M, Gudur UM, Pulluru H, Bathina P, etal. Epidemiology of vancomycin-resistant Enterococcus faecalis: a case-case-control study. Antimicrob Agents Chemother. 2013; 57: 49–55.
  • Arthur M, Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother. 1993; 37: 1563–71.
  • Fines M, Perichon B, Reynolds P, Sahm DF, Courvalin P. VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother. 1999; 43: 2161–4.
  • Perichon B, Reynolds P, Courvalin P. VanD-type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob Agents Chemother. 1997; 41: 2016–18.
  • Palmer SM, Rybak MJ. Vancomycin-resistant enterococci. Pharmacotherapy. 1996; 16: 819–29.
  • Britt NS, Potter EM, Patel N, Steed ME. Comparison of the effectiveness and safety of linezolid and daptomycin in vancomycin-resistant enterococcal bloodstream infection: a national cohort study of veterans affairs patients. Clin Infect Dis. 2015; 61: 871–8.
  • Rincon S, Panesso D, Diaz L, Carvajal LP, Reyes J, Munita JM, etal. Resistance to ‘last resort’ antibiotics in Gram-positive cocci: the post-vancomycin era. Biomedica. 2014; 34(Suppl 1): 191–208.
  • Johnson AP, Tysall L, Stockdale MV, Woodford N, Kaufmann ME, Warner M, etal. Emerging linezolid-resistant Enterococcus faecalis and Enterococcus faecium isolated from two Austrian patients in the same intensive care unit. Eur J Clin Microbiol Infect Dis. 2002; 21: 751–4.
  • Munoz-Price LS, Lolans K, Quinn JP. Emergence of resistance to daptomycin during treatment of vancomycin-resistant Enterococcus faecalis infection. Clin Infect Dis. 2005; 41: 565–6.
  • Talebi M, Asghari Moghadam N, Mamooii Z, Enayati M, Saifi M, Pourshafie MR. Antibiotic resistance and biofilm formation of Enterococcus faecalis in patient and environmental samples. Jundishapur J Microbiol. 2015; 8: e23349.
  • Rocas IN, Siqueira JF Jr., Santos KR. Association of Enterococcus faecalis with different forms of periradicular diseases. J Endod. 2004; 30: 315–20.
  • Zhang C, Du J, Peng Z. Correlation between Enterococcus faecalis and persistent intraradicular infection compared with primary intraradicular infection: a systematic review. J Endod. 2015; 41: 1207–13.
  • Tennert C, Fuhrmann M, Wittmer A, Karygianni L, Altenburger MJ, Pelz K, etal. New bacterial composition in primary and persistent/secondary endodontic infections with respect to clinical and radiographic findings. J Endod. 2014; 40: 670–7.
  • Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod. 2006; 32: 93–8.
  • Narayanan LL, Vaishnavi C. Endodontic microbiology. J Conserv Dent. 2010; 13: 233–9.
  • Al-Nazhan S, Al-Sulaiman A, Al-Rasheed F, Alnajjar F, Al-Abdulwahab B, Al-Badah A. Microorganism penetration in dentinal tubules of instrumented and retreated root canal walls. In vitro SEM study. Restor Dent Endod. 2014; 39: 258–64.
  • Souto R, Colombo AP. Prevalence of Enterococcus faecalis in subgingival biofilm and saliva of subjects with chronic periodontal infection. Arch Oral Biol. 2008; 53: 155–60.
  • Love RM. Enterococcus faecalis – a mechanism for its role in endodontic failure. Int Endod J. 2001; 34: 399–405.
  • Wang QQ, Zhang CF, Chu CH, Zhu XF. Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis. Int J Oral Sci. 2012; 4: 19–23.
  • Berutti E, Marini R, Angeretti A. Penetration ability of different irrigants into dentinal tubules. J Endod. 1997; 23: 725–7.
  • Zou L, Shen Y, Li W, Haapasalo M. Penetration of sodium hypochlorite into dentin. J Endod. 2010; 36: 793–6.
  • Chavez De Paz LE, Dahlen G, Molander A, Moller A, Bergenholtz G. Bacteria recovered from teeth with apical periodontitis after antimicrobial endodontic treatment. Int Endod J. 2003; 36: 500–8.
  • Distel JW, Hatton JF, Gillespie MJ. Biofilm formation in medicated root canals. J Endod. 2002; 28: 689–93.
  • Kolenbrander PE. Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol. 2000; 54: 413–37.
  • Davey ME, O'Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000; 64: 847–67.
  • de la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock RE. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol. 2013; 16: 580–9.
  • Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, etal. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol. 2001; 67: 4538–45.
  • Pan J, Sun K, Liang Y, Sun P, Yang X, Wang J, etal. Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro . J Endod. 2013; 39: 105–10.
  • Shen Y, Stojicic S, Haapasalo M. Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod. 2011; 37: 657–61.
  • Ricucci D, Siqueira JF Jr., Bate AL, Pitt Ford TR. Histologic investigation of root canal-treated teeth with apical periodontitis: a retrospective study from twenty-four patients. J Endod. 2009; 35: 493–502.
  • Vieira AR, Siqueira JF Jr., Ricucci D, Lopes WS. Dentinal tubule infection as the cause of recurrent disease and late endodontic treatment failure: a case report. J Endod. 2012; 38: 250–4.
  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999; 37: 1771–6.
  • Lin J, Shen Y, Haapasalo M. A comparative study of biofilm removal with hand, rotary nickel-titanium, and self-adjusting file instrumentation using a novel in vitro biofilm model. J Endod. 2013; 39: 658–63.
  • Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011; 1: 111–14.
  • Ly-Chatain MH. The factors affecting effectiveness of treatment in phages therapy. Front Microbiol. 2014; 5: 51.
  • Capparelli R, Nocerino N, Iannaccone M, Ercolini D, Parlato M, Chiara M, etal. Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J Infect Dis. 2010; 201: 52–61.
  • Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage. 2011; 1: 31–45.
  • Stambolis C. [On the nature and significance of nodular renal blastoma (author's transl)]. Zentralbl Allg Pathol. 1979; 123: 3–8.
  • Cornelissen A, Ceyssens PJ, T'Syen J, Van Praet H, Noben JP, Shaburova OV, etal. The T7-related Pseudomonas putida phage phi15 displays virion-associated biofilm degradation properties. PLoS One. 2011; 6: e18597.
  • Hughes KA, Sutherland IW, Clark J, Jones MV. Bacteriophage and associated polysaccharide depolymerases – novel tools for study of bacterial biofilms. J Appl Microbiol. 1998; 85: 583–90.
  • Hughes KA, Sutherland IW, Jones MV. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology. 1998; 144: 3039–47.
  • Vivaldi EA. [Informatics in the School of Medicine of the University of Chile. II. The school network and access to data bases]. Rev Med Chil. 1990; 118: 1387–92.
  • Gutierrez D, Vandenheuvel D, Martinez B, Rodriguez A, Lavigne R, Garcia P. Two phages, phiIPLA-RODI and phiIPLA-C1C, Lyse Mono- and Dual-Species Staphylococcal Biofilms. Appl Environ Microbiol. 2015; 81: 3336–48.
  • Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA. 2007; 104: 11197–202.
  • Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother. 2010; 54: 397–404.
  • Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, Shanahan F, etal. Bacteriophages phiMR299-2 and phiNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio. 2012; 3: e00029–12.
  • Basu S, Agarwal M, Kumar Bhartiya S, Nath G, Kumar Shukla V. An in vivo wound model utilizing bacteriophage therapy of Pseudomonas aeruginosa biofilms. Ostomy Wound Manage. 2015; 61: 16–23.
  • Nzakizwanayo J, Hanin A, Alves DR, McCutcheon B, Dedi C, Salvage J, etal. Bacteriophage can prevent encrustation and blockage of urinary catheters by Proteus mirabilis . Antimicrob Agents Chemother. 2015; 60: 1530–6.
  • Curtin JJ, Donlan RM. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis . Antimicrob Agents Chemother. 2006; 50: 1268–75.
  • Seth AK, Geringer MR, Nguyen KT, Agnew SP, Dumanian Z, Galiano RD, etal. Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast Reconstr Surg. 2013; 131: 225–34.
  • Sillankorva S, Oliveira D, Moura A, Henriques M, Faustino A, Nicolau A, etal. Efficacy of a broad host range lytic bacteriophage against Escherichia coli adhered to urothelium. Curr Microbiol. 2011; 62: 1128–32.
  • Ahiwale S, Tamboli N, Thorat K, Kulkarni R, Ackermann H, Kapadnis B. In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage. Curr Microbiol. 2011; 62: 335–40.
  • Sillankorva S, Oliveira R, Vieira MJ, Azeredo J. Real-time quantification of Pseudomonas fluorescens cell removal from glass surfaces due to bacteriophage varphiS1 application. J Appl Microbiol. 2008; 105: 196–202.
  • Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M. Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am. 2013; 95: 117–25.
  • Rahman M, Kim S, Kim SM, Seol SY, Kim J. Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling. 2011; 27: 1087–93.
  • Phee A, Bondy-Denomy J, Kishen A, Basrani B. Azarpazhooh A, Maxwell K. Efficacy of bacteriophage treatment on Pseudomonas aeruginosa biofilms. J Endod. 2013; 39: 364–9.
  • Paisano AF, Spira B, Cai S, Bombana AC. In vitro antimicrobial effect of bacteriophages on human dentin infected with Enterococcus faecalis ATCC 29212. Oral Microbiol Immunol. 2004; 19: 327–30.
  • Summers WC. Felix d'Herelle and the origins of molecular biology. 1999; New Haven, CT: Yale University Press.
  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, etal. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol. 2010; 11: 69–86.
  • Kutter EM, Kuhl SJ, Abedon ST. Re-establishing a place for phage therapy in Western medicine. Future Microbiol. 2015; 10: 685–8.
  • Fadlallah A, Chelala E, Legeais JM. Corneal infection therapy with topical bacteriophage administration. Open Ophthalmol J. 2015; 9: 167–8.
  • Brussow H. What is needed for phage therapy to become a reality in Western medicine?. Virology. 2012; 434: 138–42.
  • Bruttin A, Brussow H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother. 2005; 49: 2874–8.
  • Rose T, Verbeken G, Vos DD, Merabishvili M, Vaneechoutte M, Lavigne R, etal. Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma. 2014; 4: 66–73.
  • Sarker SA, Sultana S, Reuteler G, Moine D, Descombes P, Charton F, etal. Oral phage therapy of acute bacterial iarrhea with two coliphage preparations: a andomized trial in children from Bangladesh. EBioMedicine. 2016; 4: 124–37.
  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage. 2011; 66–85.
  • Casas V, Maloy S. Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol. 2011; 6: 1461–73.
  • Abedon ST, Lejeune JT. Why bacteriophage encode exotoxins and other virulence factors. Evol Bioinform Online. 2005; 1: 97–110.
  • Casas V, Magbanua J, Sobrepena G, Kelley ST, Maloy SR. Reservoir of bacterial exotoxin genes in the environment. Int J Microbiol. 2010; 2010: 754368.
  • Abedon ST, Thomas-Abedon C. Phage therapy pharmacology. Curr Pharm Biotechnol. 2010; 11: 28–47.
  • Zhang W, Mi Z, Yin X, Fan H, An X, Zhang Z, etal. Characterization of Enterococcus faecalis phage IME-EF1 and its endolysin. PLoS One. 2013; 8: e80435.
  • Uchiyama J, Rashel M, Takemura I, Wakiguchi H, Matsuzaki S. In silico and in vivo evaluation of bacteriophage phiEF24C, a candidate for treatment of Enterococcus faecalis infections. Appl Environ Microbiol. 2008; 74: 4149–63.
  • Ladero V, Gomez-Sordo C, Sanchez-Llana E, Del Rio B, Redruello B, Fernandez M, etal. Q69 (an Enterococcus faecalis-Infecting Bacteriophage) as a biocontrol agent for reducing tyramine in dairy products. Front Microbiol. 2016; 7: 445.
  • Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, etal. Isolation and characterization of a novel Enterococcus faecalis bacteriophage phiEF24C as a therapeutic candidate. FEMS Microbiol Lett. 2008; 278: 200–6.
  • Horiuchi T, Sakka M, Hayashi A, Shimada T, Kimura T, Sakka K. Complete genome sequence of bacteriophage BC-611 specifically infecting Enterococcus faecalis strain NP-10011. J Virol. 2012; 86: 9538–9.
  • Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poradosu-Cohen R, etal. Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol. 2015; 81: 2696–705.
  • Khalifa L, Coppenhagen-Glazer S, Shlezinger M, Kott-Gutkowski M, Adini O, Beyth N, etal. Complete genome sequence of Enterococcus bacteriophage EFLK1. Genome Announc. 2015; 3: e01308–15.
  • Parasion S, Kwiatek M, Mizak L, Gryko R, Bartoszcze M, Kocik J. Isolation and characterization of a novel bacteriophage phi4D lytic against Enterococcus faecalis strains. Curr Microbiol. 2012; 65: 284–9.
  • Li X, Ding P, Han C, Fan H, Wang Y, Mi Z, etal. Genome analysis of Enterococcus faecalis bacteriophage IME-EF3 harboring a putative metallo-beta-lactamase gene. Virus Genes. 2014; 49: 145–51.
  • Fard RM, Barton MD, Arthur JL, Heuzenroeder MW. Whole-genome sequencing and gene mapping of a newly isolated lytic enterococcal bacteriophage EFRM31. Arch Virol. 2010; 155: 1887–91.
  • Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, Edwards C, etal. Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol. 2010; 192: 1122–30.
  • Yoon BH, Chang HI. Genomic annotation for the temperate phage EFC-1, isolated from Enterococcus faecalis KBL101. Arch Virol. 2015; 160: 601–4.
  • Stevens RH, Ektefaie MR, Fouts DE. The annotated complete DNA sequence of Enterococcus faecalis bacteriophage phiEf11 and its comparison with all available phage and predicted prophage genomes. FEMS Microbiol Lett. 2011; 317: 9–26.
  • Rigvava S, Tchgkonia I, Jgenti D, Dvalidze T, Carpino J, Goderdzishvili M. Comparative analysis of the biological and physical properties of Enterococcus faecalis bacteriophage vB_EfaS_GEC-EfS_3 and Streptococcus mitis bacteriophage vB_SmM_GEC-SmitisM_2. Can J Microbiol. 2013; 59: 18–21.
  • Young-Woo K, Hyo-Thl C. Isolation and molecular characterization of ΦFC1,a new temperate phage from Enterococcus faecalis . Mol Cell. 1994; 4: 155–8.
  • Nigutova K, Styriak I, Javorsky P, Pristas P. Partial characterization of Enterococcus faecalis bacteriophage F4. Folia Microbiol (Praha). 2008; 53: 234–6.
  • Wolanek GA, Loushine RJ, Weller RN, Kimbrough WF, Volkmann KR. In vitro bacterial penetration of endodontically treated teeth coronally sealed with a dentin bonding agent. J Endod. 2001; 27: 354–7.
  • Chavez de Paz LE. Redefining the persistent infection in root canals: possible role of biofilm communities. J Endod. 2007; 33: 652–62.
  • Saber Sel D, El-Hady SA. Development of an intracanal mature Enterococcus faecalis biofilm and its susceptibility to some antimicrobial intracanal medications; an in vitro study. Eur J Dent. 2012; 6: 43–50.
  • Sime-Ngando T. Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front Microbiol. 2014; 5: 355.
  • Shapiro OH, Kushmaro A. Bacteriophage ecology in environmental biotechnology processes. Curr Opin Biotechnol. 2011; 22: 449–55.