1,973
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Actinomyces spp. gene expression in root caries lesions

, , , , &
Article: 32383 | Received 27 May 2016, Accepted 15 Aug 2016, Published online: 16 Sep 2016

References

  • Beck J. The epidemiology of root surface caries. J Dent Res. 1990; 69: 1216–21.
  • Syed SA, Loesche WJ, Pape HL, Grenier E. Predominant cultivable flora isolated from human root surface caries plaque. Infect Immun. 1975; 11: 727–31.
  • Sumney DL, Jordan HV. Characterization of bacteria isolated from human root surface carious lesions. J Dent Res. 1974; 53: 343–51.
  • Socransky SS, Hubersak C, Propas D. Induction of periodontal destruction in gnotobiotic rats by a human oral strain of Actinomyces naeslundii . Arch Oral Biol. 1970; 15: 993–5.
  • Jordan HV, Hammond BF. Filamentous bacteria isolated from human root surface caries. Arch Oral Biol. 1972; 17: 1333–42.
  • Beighton D, Lynch E, Heath MR. A microbiological study of primary root-caries lesions with different treatment needs. J Dent Res. 1993; 72: 623–9.
  • Emilson CG, Klock B, Sanford CB. Microbial flora associated with presence of root surface caries in periodontally treated patients. Scand J Dent Res. 1988; 96: 40–9.
  • Emilson CG, Ravald N, Birkhed D. Effects of a 12-month prophylactic programme on selected oral bacterial populations on root surfaces with active and inactive carious lesions. Caries Res. 1993; 27: 195–200.
  • Ellen RP, Banting DW, Fillery ED. Longitudinal microbiological investigation of a hospitalized population of older adults with a high root surface caries risk. J Dent Res. 1985; 64: 1377–81.
  • Keltjens H, Schaeken T, van der Hoeven H, Hendriks J. Epidemiology of root surface caries in patients treated for periodontal diseases. Community Dent Oral Epidemiol. 1988; 16: 171–4.
  • Van Houte J, Jordan HV, Laraway R, Kent R, Soparkar PM, DePaola PF. Association of the microbial flora of dental plaque and saliva with human root-surface caries. J Dent Res. 1990; 69: 1463–8.
  • Nyvad B, Kilian M. Microflora associated with experimental root surface caries in humans. Infect Immun. 1990; 58: 1628–33.
  • Preza D, Olsen I, Aas JA, Willumsen T, Grinde B, Paster BJ. Bacterial profiles of root caries in elderly patients. J Clin Microbiol. 2008; 46: 2015–21.
  • Do T, Sheehy EC, Mulli T, Hughes F, Beighton D. Transcriptomic analysis of three Veillonella spp. present in carious dentine and in the saliva of caries-free individuals. Front Cell Infect Microbiol. 2015; 5: 25.
  • Love M, Anders S, Huber W. Differential analysis of count data – the DESeq2 package. bioRxiv. 2014; 15: 550.
  • Zeng L, Choi SC, Danko CG, Siepel A, Stanhope MJ, Burne RA. Gene regulation by CcpA and catabolite repression explored by RNA-Seq in Streptococcus mutans . PLoS One. 2013; 8: e60465.
  • Schüpbach P, Osterwalder V, Guggenheim B. Human root caries: microbiota in plaque covering sound, carious and arrested carious root surfaces. Caries Res. 1995; 29: 382–95.
  • Preza D, Olsen I, Willumsen T, Boches SK, Cotton SL, Grinde B, etal. Microarray analysis of the microflora of root caries in elderly. Eur J Clin Microbiol Infect Dis. 2009; 28: 509–17.
  • Brown LR, Billings RJ, Kaster AG. Quantitative comparisons of potentially cariogenic microorganisms cultured from noncarious and carious root and coronal tooth surfaces. Infect Immun. 1986; 51: 765–70.
  • Brailsford SR, Lynch E, Beighton D. The isolation of Actinomyces naeslundii from sound root surfaces and root carious lesions. Caries Res. 1998; 32: 100–6.
  • Beighton D, Lynch E. Relationships between yeasts and primary root-caries lesions. Gerodontology. 1993; 10: 105–8.
  • Benítez-Páez A, Belda-Ferre P, Simón-Soro A, Mira A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genomics. 2014; 15: 311.
  • Peterson SN, Meissner T, Su AI, Snesrud E, Ong AC, Schork NJ, etal. Functional expression of dental plaque microbiota. Front Cell Infect Microbiol. 2014; 4: 108.
  • Frias-Lopez J, Duran-Pinedo A. Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. J Bacteriol. 2012; 194: 2082–95.
  • Brailsford SR, Shah B, Simons D, Gilbert S, Clark D, Ines I, etal. The predominant aciduric microflora of root-caries lesions. J Dent Res. 2001; 80: 1828–33.
  • Takahashi N, Kalfas S, Yamada T. Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii . J Bacteriol. 1995; 177: 5806–11.
  • van Houte J, Lopman J, Kent R. The predominant cultivable flora of sound and carious human root surfaces. J Dent Res. 1994; 73: 1727–34.
  • Takahashi N, Yamada T. Glucose and lactate metabolism by Actinomyces naeslundii . Crit Rev Oral Biol Med. 1999; 10: 487–503.
  • Mishra A, Wu C, Yang J, Cisar JO, Das A, Ton-That H. The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. Mol Microbiol. 2010; 77: 841–54.
  • Ruhl S, Eidt A, Melzl H, Reischl U, Cisar JO. Probing of microbial biofilm communities for coadhesion partners. Appl Environ Microbiol. 2014; 80: 6583–90.
  • Liu T, Gibbons RJ, Hay DI, Skobe Z. Binding of Actinomyces viscosus to collagen: association with the type 1 fimbrial adhesin. Oral Microbiol Immunol. 1991; 6: 1–5.
  • Gross EL, Leys EJ, Gasparovich SR, Firestone ND, Schwartzbaum JA, Janies DA, etal. Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol. 2010; 48: 4121–8.