1,012
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure.

Article: 14787 | Received 18 Nov 2011, Accepted 18 Nov 2011, Published online: 01 Feb 2012

References

  • Abe M, Takahashi M, Takeuchi K, Fukuda M. Studies on the significance of taurine in radiation injury. Radiation Res. 1968; 33: 563–73.
  • Sugahara T, Nagata H, Tanaka T. [Experimental studies on radiation protection by taurine]. [Article in Japanese]. Nippon Igaku Hoshasen Gakkai Zasshi. 1969; 29: 156–61.
  • Kolesnikov IuA, Novosel'tseva SD, Iartsev EI, Kudriashov IuB, Bogatyrev GP. [Antiradiation properties of taurine compounds]. [Article in Russian]. Radiobiologiia. 1975;15: 928–31.
  • Feuer L, Benkó G. Effect of glutaurine and its derivatives and their combinations with radiation protective substances upon irradiated mice. Acta Radiol Oncol. 1981; 20: 319–24.
  • Feuer L, Ormai S. Effect of protein-free parathyroid extract (PF-PTE) and gamma-L-glutamyl-taurine (glutaurine) on X-ray induced hyperglycaemia in the rat. Acta Med Acad Sci Hung. 1981; 38: 159–62.
  • Mashkova NIu, Alekseeva EN, Dokshina GA. [Possible regulation by taurine of the intracellular potassium levels in hepatocytes and erythrocytes of irradiated rats]. [Article in Russian]. Radiobiologiia. 1983; 23: 758–60.
  • Mashkova NIu, Borovikova GV, Dokshina GA. [Effect of insulin and taurine on the potassium content of the perfused liver in irradiated rats]. [Article in Russian]. Radiobiologiia. 1983; 23: 240–3.
  • Mashkova NIu, Alekseeva EN, Dokshina GA. [Effect of taurine on the potassium content of rat thymocytes after irradiation]. [Article in Russian]. Radiobiologiia. 1987; 27: 372–4.
  • Robb WB, Condron C, Moriarty M, Walsh TN, Bouchier-Hayes DJ. Taurine attenuates radiation-induced lung fibrosis in C57/Bl6 fibrosis prone mice. Ir J Med Sci. 2010; 179: 99–105.
  • Bigwood EJ. [On the increased excretion of taurine and beta aminoisobutyric acid in urine following irradiation and the sensitivity of these biochemical reactions]. [Article in German]. Strahlenschutz Forsch Prax. 1964; 4: 183–97.
  • Fromageot P, Boquet PL. [On the origin of the increased taurine excretion in irradiated rats]. [Article in German]. Strahlenschutz Forsch Prax. 1964; 4: 199–230.
  • Streffer C, Melching HJ, Mattausch H. [Studies on biologic radiation protection. 70. On the excretion of taurine in white mice following whole body irradiation and exposure to radiation-protective substances]. [Article in German]. Strahlentherapie. 1966; 130: 146–56.
  • Pentz EI. Adaptation of the Rimini-Schryver reaction for the measurement of allantoin in urine to the autoanalyzer: allantoin and taurine excretion following neutron irradiation. Anal Biochem. 1969; 27: 333–42.
  • Streffer C, Akinsanya O, Schafferus S. [Research on the increase in taurine excretion after irradiation in mice]. [Article in German]. Strahlentherapie. 1969; 138: 733–8.
  • Raghavan KG, Nadkarni GB. Formation and excretion of taurine in x-irradiated rats. Int J Radiat Biol Relat Stud Phys Chem Med. 1970; 18: 41–9.
  • Dilley JV. The origin of urinary taurine excretion during chronic radiation injury. Radiat Res. 1972; 50: 191–6.
  • Bezkrovnaia LA, Lapteva TA, Dokshina GA, Baranova MI. [Mechanisms of taurine hyperexcretion following whole-body irradiation]. [Article in Russian]. Radiobiologiia. 1976; 16: 683–6.
  • Bezkrovnaia LA, Dokshina GA. [Sources of taurine hyperexcretion in rats after irradiation]. [Article in Russian]. Radiobiologiia. 1980; 20: 455–9.
  • Moroz BB, Vasil'ev PS, Fedorovskiı˘ LL, Grozdov SP, Morozova NV. [Effect of local x-ray irradiation of the abdominal area on the amino acid content of the blood plasma and their urinary excretion in dogs and rats]. [Article in Russian]. Radiobiologiia. 1987; 27: 332–8.
  • Bezkrovnaia LA, Kostesha NIa. [The diagnostic value of the status of urinary taurine in the early stages following the irradiation of animals]. [Article in Russian]. Med Radiol (Mosk). 1990; 35: 23–5.
  • Tyburski JB, Patterson AD, Krausz KW, Slavík J, Fornace AJ Jr, Gonzalez FJ, Idle JR. Radiation metabolomics. 1. Identification of minimally invasive urine biomarkers for gamma-radiation exposure in mice. Radiat Res. 2008; 170: 1–14.
  • Desai TK, Maliakkal J, Kinzie JL, Ehrinpreis MN, Luk GD, Cejka J. Taurine deficiency after intensive chemotherapy and/or radiation. Am J Clin Nutr. 1992; 55: 708–11.
  • Kerai MD, Waterfield CJ, Kenyon SH, Asker DS, Timbrell JA. Taurine: protective properties against ethanol-induced hepatic steatosis and lipid peroxidation during chronic ethanol consumption in rats. Amino Acids. 1998; 15: 53–76.
  • Kerai MD, Waterfield CJ, Kenyon SH, Asker DS, Timbrell JA. Reversal of ethanol-induced hepatic steatosis and lipid peroxidation by taurine: a study in rats. Alcohol Alcohol. 1999; 34: 529–41.
  • Xie Y, Li XP, Wang CW, Huang DQ, Zhu JQ, Zhang KH, Chen J. [Ethanol-induced gastric mucosal injury and the protection of taurine against the injury in rats]. [Article in Chinese]. Sheng Li Xue Bao. 1999; 51: 310–4.
  • Bleich S, Degner D. Reversal of ethanol-induced hepatic steatosis and lipid peroxidation by taurine: a study in rats. Alcohol Alcohol. 2000; 35: 215.
  • Harada H, Kitazaki K, Tsujino T, Watari Y, Iwata S, Nonaka H, Hayashi T, Takeshita T, Morimoto K, Yokoyama M. Oral taurine supplementation prevents the development of ethanol-induced hypertension in rats. Hypertens Res. 2000; 23: 277–84.
  • Kerai MD, Waterfield CJ, Kenyon SH, Asker DS, Timbrell JA. The effect of taurine depletion by beta-alanine treatment on the susceptibility to ethanol-induced hepatic dysfunction in rats. Alcohol Alcohol. 2001; 36: 29–38.
  • Balkan J, Kanbağli O, Aykaç-Toker G, Uysal M. Taurine treatment reduces hepatic lipids and oxidative stress in chronically ethanol-treated rats. Biol Pharm Bull. 2002; 25: 1231–3.
  • Erman F, Balkan J, Cevikbaş U, Koçak-Toker N, Uysal M. Betaine or taurine administration prevents fibrosis and lipid peroxidation induced by rat liver by ethanol plus carbon tetrachloride intoxication. Amino Acids. 2004; 27: 199–205.
  • Pushpakiran G, Mahalakshmi K, Anuradha CV. Taurine restores ethanol-induced depletion of antioxidants and attenuates oxidative stress in rat tissues. Amino Acids. 2004; 27: 91–6.
  • Pushpakiran G, Mahalakshmi K, Anuradha CV. Protective effects of taurine on glutathione and glutathione-dependent enzymes in ethanol-fed rats. Pharmazie. 2004; 59: 869–72.
  • Pushpakiran G, Mahalakshmi K, Viswanathan P, Anuradha CV. Taurine prevents ethanol-induced alterations in lipids and ATPases in rat tissues. Pharmacol Rep. 2005; 57: 578–87.
  • Choi MJ, Kim MJ, Chang KJ. The effect of dietary taurine supplementation on plasma and liver lipid concentrations and mineral metabolism in rats fed alcohol. Adv Exp Med Biol. 2006; 583: 243–50.
  • Park T, Cho K, Park SH, Lee DH, Kim HW. Taurine normalizes blood levels and urinary loss of selenium, chromium, and manganese in rats chronically consuming alcohol. Adv Exp Med Biol. 2009; 643: 407–14.
  • Wu G, Yang J, Sun C, Luan X, Shi J, Hu J. Effect of taurine on alcoholic liver disease in rats. Amino Acids. 2009; 36: 457–64.
  • Wu G, Yang J, Sun C, Luan X, Shi J, Hu J. Effect of taurine on alcoholic liver disease in rats. Adv Exp Med Biol. 2009; 643: 313–22.
  • Yang HT, Chien YW, Tsen JH, Chang CC, Chang JH, Huang SY. Taurine supplementation improves the utilization of sulfur-containing amino acids in rats continually administrated alcohol. J Nutr Biochem. 2009; 20: 132–9.
  • Lakshmi Devi S, Anuradha CV. Mitochondrial damage, cytotoxicity and apoptosis in iron-potentiated alcoholic liver fibrosis: amelioration by taurine. Amino Acids. 2010; 38: 869–79.
  • Bruns H, Watanpour I, Gebhard MM, Flechtenmacher C, Galli U, Schulze-Bergkamen H, Zorn M, Büchler MW, Schemmer P. Glycine and taurine equally prevent fatty livers from Kupffer cell dependent injury: an in vivo microscopy study. Microcirculation. 2010 Dec 22. 10.3402/mehd.v23i0.14787. [Epub ahead of print].
  • Waters E, Wang JH, Redmond HP, Wu QD, Kay E, Bouchier-Hayes D. Role of taurine in preventing acetaminophen-induced hepatic injury in the rat. Am J Physiol Gastrointest Liver Physiol. 2001; 280: G1274–9.
  • Acharya M, Lau-Cam CA. Comparison of the protective actions of N-acetylcysteine, hypotaurine and taurine against acetaminophen-induced hepatotoxicity in the rat. J Biomed Sci. 2010;17(Suppl 1): S35.
  • Das J, Ghosh J, Manna P, Sil PC. Acetaminophen induced acute liver failure via oxidative stress and JNK activation: protective role of taurine by the suppression of cytochrome P450 2E1. Free Radic Res. 2010; 44: 340–55.
  • Das J, Ghosh J, Manna P, Sil PC. Taurine protects acetaminophen-induced oxidative damage in mice kidney through APAP urinary excretion and CYP2E1 inactivation. Toxicology. 2010; 269: 24–34.
  • Erdem A, Gündoğan NU, Usubütün A, Kilinç K, Erdem SR, Kara A, Bozkurt A. The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats. Nephrol Dial Transplant. 2000; 15: 1175–82.
  • Eldin AA, Shaheen AA, Abd Elgawad HM, Shehata NI. Protective effect of taurine and quercetin against renal dysfunction associated with the combined use of gentamycin and diclofenac. Indian J Biochem Biophys. 2008; 45: 332–40.
  • Liu HY, Chi FL, Gao WY. Taurine attenuates aminoglycoside ototoxicity by inhibiting inducible nitric oxide synthase expression in the cochlea. Neuroreport. 2008; 19: 117–20.
  • Hagar HH. The protective effect of taurine against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Toxicol Lett. 2004; 151: 335–43.
  • Hagar HH, El Etter E, Arafa M. Taurine attenuates hypertension and renal dysfunction induced by cyclosporine A in rats. Clin Exp Pharmacol Physiol. 2006; 33: 189–96.
  • Saad SY, Al-Rikabi AC. Protection effects of taurine supplementation against cisplatin-induced nephrotoxicity in rats. Chemotherapy. 2002; 48: 42–8.
  • Sato S, Yamate J, Saito T, Hosokawa T, Saito S, Kurasaki M. Protective effect of taurine against renal interstitial fibrosis of rats induced by cisplatin. Naunyn Schmiedebergs Arch Pharmacol. 2002; 365: 277–83.
  • Liao Y, Lu X, Lu C, Li G, Jin Y, Tang H. Selection of agents for prevention of cisplatin-induced hepatotoxicity. Pharmacol Res. 2008; 57: 125–31.
  • Han X, Chesney RW. Mechanism of TauT in protecting against cisplatin-induced kidney injury (AKI). Adv Exp Med Biol. 2009; 643: 105–12.
  • Han X, Yue J, Chesney RW. Functional TauT protects against acute kidney injury. J Am Soc Nephrol. 2009; 20: 1323–32.
  • Azuma J, Hamaguchi T, Ohta H, Takihara K, Awata N, Sawamura A, Harada H, Tanaka Y, Kishimoto S. Calcium overload-induced myocardial damage caused by isoproterenol and by adriamycin: possible role of taurine in its prevention. Adv Exp Med Biol. 1987; 217: 167–79.
  • Hamaguchi T, Azuma J, Awata N, Ohta H, Takihara K, Harada H, Kishimoto S, Sperelakis N. Reduction of doxorubicin-induced cardiotoxicity in mice by taurine. Res Commun Chem Pathol Pharmacol. 1988; 59: 21–30.
  • Hamaguchi T, Azuma J, Harada H, Takahashi K, Kishimoto S, Schaffer SW. Protective effect of taurine against doxorubicin-induced cardiotoxicity in perfused chick hearts. Pharmacol Res. 1989; 21: 729–34.
  • Harada H, Cusack BJ, Olson RD, Stroo W, Azuma J, Hamaguchi T, Schaffer SW. Taurine deficiency and doxorubicin: interaction with the cardiac sarcolemmal calcium pump. Biochem Pharmacol. 1990; 39: 745–51.
  • Venkatesan N, Venkatesan P, Karthikeyan J, Arumugam V. Protection by taurine against adriamycin-induced proteinuria and hyperlipidemia in rats. Proc Soc Exp Biol Med. 1997; 215: 158–64.
  • Huang XM, Zhu WH, Kang ML. Study on the effect of doxorubicin on expressions of genes encoding myocardial sarcoplasmic reticulum Ca2 +  transport proteins and the effect of taurine on myocardial protection in rabbits. J Zhejiang Univ Sci. 2003; 4: 114–20.
  • Ito T, Muraoka S, Takahashi K, Fujio Y, Schaffer SW, Azuma J. Beneficial effect of taurine treatment against doxorubicin-induced cardiotoxicity in mice. Adv Exp Med Biol. 2009; 643: 65–74.
  • Das J, Ghosh J, Manna P, Sil PC. Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol. 2011; 81: 891–909.
  • Wang QJ, Giri SN, Hyde DM, Li C. Amelioration of bleomycin-induced pulmonary fibrosis in hamsters by combined treatment with taurine and niacin. Biochem Pharmacol. 1991; 42: 1115–22.
  • Giri SN, Wang Q. Taurine and niacin offer a novel therapeutic modality in prevention of chemically-induced pulmonary fibrosis in hamsters. Adv Exp Med Biol. 1992; 315: 329–40.
  • Gordon RE, Heller RF, Heller RF. Taurine protection of lungs in hamster models of oxidant injury: a morphologic time study of paraquat and bleomycin treatment. Adv Exp Med Biol. 1992; 315: 319–28.
  • Wang Q, Hyde DM, Giri SN. Abatement of bleomycin-induced increases in vascular permeability, inflammatory cell infiltration, and fibrotic lesions in hamster lungs by combined treatment with taurine and niacin. Lab Invest. 1992; 67: 234–42.
  • Bhat M, Rojanasakul Y, Weber SL, Ma JY, Castranova V, Banks DE, Ma JK. Fluoromicroscopic studies of bleomycin-induced intracellular oxidation in alveolar macrophages and its inhibition by taurine. Environ Health Perspect. 1994; 102(Suppl 10): 91–6.
  • Blaisdell RJ, Schiedt MJ, Giri SN. Dietary supplementation with taurine and niacin prevents the increase in lung collagen cross-links in the multidose bleomycin hamster model of pulmonary fibrosis. J Biochem Toxicol. 1994; 9: 79–86.
  • Giri SN, Blaisdell R, Rucker RB, Wang Q, Hyde DM. Amelioration of bleomycin-induced lung fibrosis in hamsters by dietary supplementation with taurine and niacin: biochemical mechanisms. Environ Health Perspect. 1994; 102(Suppl 10): 137–47.
  • Blaisdell RJ, Giri SN. Mechanism of antifibrotic effect of taurine and niacin in the multidose bleomycin-hamster model of lung fibrosis: inhibition of lysyl oxidase and collagenase. J Biochem Toxicol. 1995; 10: 203–10.
  • Gurujeyalakshmi G, Iyer SN, Hollinger MA, Giri SN. Procollagen gene expression is down-regulated by taurine and niacin at the transcriptional level in the bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther. 1996; 277: 1152–7.
  • Gurujeyalakshmi G, Hollinger MA, Giri SN. Regulation of transforming growth factor-beta1 mRNA expression by taurine and niacin in the bleomycin hamster model of lung fibrosis. Am J Respir Cell Mol Biol. 1998; 18: 334–42.
  • Giri SN, Gurujeyalakshmi G, Wang Y. Suppression of bleomycin-induced increased production of nitric oxide and NF-kB activation by treatment with taurine and niacin. Adv Exp Med Biol. 2000; 483: 545–61.
  • Gurujeyalakshmi G, Wang Y, Giri SN. Suppression of bleomycin-induced nitric oxide production in mice by taurine and niacin. Nitric Oxide. 2000; 4: 399–411.
  • Gurujeyalakshmi G, Wang Y, Giri SN. Taurine and niacin block lung injury and fibrosis by down-regulating bleomycin-induced activation of transcription nuclear factor-kappaB in mice. J Pharmacol Exp Ther. 2000; 293: 82–90.
  • Giri SN. The combined treatment with taurine and niacin blocks the bleomycin-induced activation of nuclear factor-kappaB and lung fibrosis. Adv Exp Med Biol. 2003; 526: 381–94.
  • Schuller-Levis GB, Gordon RE, Wang C, Park E. Taurine reduces lung inflammation and fibrosis caused by bleomycin. Adv Exp Med Biol. 2003; 526: 395–402.
  • Schuller-Levis G, Gordon RE, Wang C, Park SY, Park E. Protection of bleomycin-induced fibrosis and inflammation by taurine. Int Immunopharmacol. 2009; 9: 971–7.
  • Cetiner M, Sener G, Sehirli AO, Ekşioğlu-Demiralp E, Ercan F, Sirvanci S, Gedik N, Akpulat S, Tecimer T, Yeğen BC. Taurine protects against methotrexate-induced toxicity and inhibits leukocyte death. Toxicol Appl Pharmacol. 2005; 209: 39–50.
  • Pierson HF, Fisher JM, Rabinovitz M. Modulation by taurine of the toxicity of taumustine, a compound with antitumor activity. J Natl Cancer Inst. 1985; 75: 905–9.
  • Finnegan NM, Redmond HP, Bouchier-Hayes DJ. Taurine attenuates recombinant interleukin-2-activated, lymphocyte-mediated endothelial cell injury. Cancer. 1998; 82: 186–99.
  • Abdih H, Kelly CJ, Bouchier-Hayes D, Barry M, Kearns S. Taurine prevents interleukin-2-induced acute lung injury in rats. Eur Surg Res. 2000; 32: 347–52.
  • Finnegan N, Toomey D, Condron C, Redmond HP, Da Costa M, Bouchier-Hayes DJ. Potentiation of the therapeutic index of interleukin-2 immunotherapy by combination with taurine in a syngeneic murine tumour model. Ir J Med Sci. 2002; 171: 85–8.
  • Maher SG, Condron CE, Bouchier-Hayes DJ, Toomey DM. Taurine attenuates CD3/interleukin-2-induced T cell apoptosis in an in vitro model of activation-induced cell death (AICD). Clin Exp Immunol. 2005; 139: 279–86.
  • Tabassum H, Rehman H, Banerjee BD, Raisuddin S, Parvez S. Attenuation of tamoxifen-induced hepatotoxicity by taurine in mice. Clin Chim Acta. 2006; 370: 129–36.
  • Tabassum H, Parvez S, Rehman H, Dev Banerjee B, Siemen D, Raisuddin S. Nephrotoxicity and its prevention by taurine in tamoxifen induced oxidative stress in mice. Hum Exp Toxicol. 2007; 26: 509–18.
  • Parvez S, Tabassum H, Banerjee BD, Raisuddin S. Taurine prevents tamoxifen-induced mitochondrial oxidative damage in mice. Basic Clin Pharmacol Toxicol. 2008; 102: 382–7.
  • Wang Q, Hollinger MA, Giri SN. Attenuation of amiodarone-induced lung fibrosis and phospholipidosis in hamsters by taurine and/or niacin treatment. J Pharmacol Exp Ther. 1992; 262: 127–32.
  • Ohta H, Azuma J, Onishi S, Awata N, Takihara K, Kishimoto S. Protective effect of taurine against isoprenaline-induced myocardial damage. Basic Res Cardiol. 1986; 81: 473–81.
  • Ohta H, Azuma J, Awata N, Hamaguchi T, Tanaka Y, Sawamura A, Kishimoto S, Sperelakis N. Mechanism of the protective action of taurine against isoprenaline induced myocardial damage. Cardiovasc Res. 1988; 22: 407–13.
  • Shi YR, Bu DF, Qi YF, Gao L, Jiang HF, Pang YZ, Tang CS, Du JB. Dysfunction of myocardial taurine transport and effect of taurine supplement in rats with isoproterenol-induced myocardial injury. Acta Pharmacol Sin. 2002; 23: 910–8.
  • Shiny KS, Kumar SH, Farvin KH, Anandan R, Devadasan K. Protective effect of taurine on myocardial antioxidant status in isoprenaline-induced myocardial infarction in rats. J Pharm Pharmacol. 2005; 57: 1313–7.
  • Yamauchi-Takihara K, Azuma J, Kishimoto S. Taurine protection against experimental arterial calcinosis in mice. Biochem Biophys Res Commun. 1986; 140: 679–83.
  • Sener G, Ozer Sehirli A, Ipçi Y, Cetinel S, Cikler E, Gedik N, Alican I. Taurine treatment protects against chronic nicotine-induced oxidative changes. Fundam Clin Pharmacol. 2005; 19: 155–64.
  • Sener G, Sehirli O, Ipçi Y, Cetinel S, Cikler E, Gedik N, Alican I. Protective effects of taurine against nicotine-induced oxidative damage of rat urinary bladder and kidney. Pharmacology. 2005; 74: 37–44.
  • Ulrich-Merzenich G, Zeitler H, Vetter H, Bhonde RR. Protective effects of taurine on endothelial cells impaired by high glucose and oxidized low density lipoproteins. Eur J Nutr. 2007; 46: 431–8.
  • Hwang DF, Hour JL, Cheng HM. Effect of taurine on toxicity of oxidized fish oil in rats. Food Chem Toxicol. 2000; 38: 585–91.
  • Tokunaga H, Yoneda Y, Kuriyama K. Protective actions of taurine against streptozotocin-induced hyperglycemia. Biochem Pharmacol. 1979; 28: 2807–11.
  • Trachtman H, Futterweit S, Bienkowski RS. Taurine prevents glucose-induced lipid peroxidation and increased collagen production in cultured rat mesangial cells. Biochem Biophys Res Commun. 1993; 191: 759–65.
  • Trachtman H, Futterweit S, Prenner J, Hanon S. Antioxidants reverse the antiproliferative effect of high glucose and advanced glycosylation end products in cultured rat mesangial cells. Biochem Biophys Res Commun. 1994; 199: 346–52.
  • Ha H, Yu MR, Kim KH. Melatonin and taurine reduce early glomerulopathy in diabetic rats. Free Radic Biol Med. 1999; 26: 944–50.
  • Wu QD, Wang JH, Fennessy F, Redmond HP, Bouchier-Hayes D. Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. Am J Physiol. 1999; 277: C1229–38.
  • Verzola D, Bertolotto MB, Villaggio B, Ottonello L, Dallegri F, Frumento G, Berruti V, Gandolfo MT, Garibotto G, Deferran G. Taurine prevents apoptosis induced by high ambient glucose in human tubule renal cells. J Investig Med. 2002; 50: 443–51.
  • Haber CA, Lam TK, Yu Z, Gupta N, Goh T, Bogdanovic E, Giacca A, Fantus IG. N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab. 2003; 285: E744–53.
  • Han J, Bae JH, Kim SY, Lee HY, Jang BC, Lee IK, Cho CH, Lim JG, Suh SI, Kwon TK, Park JW, Ryu SY, Ho WK, Earm YE, Song DK. Taurine increases glucose sensitivity of UCP2-overexpressing beta-cells by ameliorating mitochondrial metabolism. Am J Physiol Endocrinol Metab. 2004; 287: E1008–18.
  • Mao DW, Zhao YP, Li SR, Che JH, Tan WH. [Study of teratogenicity of hyperglycemia on neural tube defects and antagonistic effect of taurine]. [Article in Chinese]. Zhonghua Fu Chan Ke Za Zhi. 2004; 39: 169–72.
  • Casey RG, Gang C, Joyce M, Bouchier-Hayes DJ. Taurine attenuates acute hyperglycaemia-induced endothelial cell apoptosis, leucocyte-endothelial cell interactions and cardiac dysfunction. J Vasc Res. 2007; 44: 31–9.
  • Derlacz RA, Sliwinska M, Piekutowska A, Winiarska K, Drozak J, Bryla J. Melatonin is more effective than taurine and 5-hydroxytryptophan against hyperglycemia-induced kidney-cortex tubules injury. J Pineal Res. 2007; 42: 203–9.
  • Huang JS, Chuang LY, Guh JY, Huang YJ, Hsu MS. Antioxidants attenuate high glucose-induced hypertrophic growth in renal tubular epithelial cells. Am J Physiol Renal Physiol. 2007; 293: F1072–82.
  • Son HY, Kim H, H Kwon Y. Taurine prevents oxidative damage of high glucose-induced cataractogenesis in isolated rat lenses. J Nutr Sci Vitaminol (Tokyo). 2007; 53: 324–30.
  • Anuradha CV, Balakrishnan SD. Taurine attenuates hypertension and improves insulin sensitivity in the fructose-fed rat, an animal model of insulin resistance. Can J Physiol Pharmacol. 1999; 77: 749–54.
  • Anitha Nandhini AT, Balakrishnan SD, Anuradha CV. Taurine modulates antioxidant potential and controls lipid peroxidation in the aorta of high fructose-fed rats. J Biochem Mol Biol Biophys. 2002; 6: 129–33.
  • Nandhini AT, Balakrishnan SD, Anuradha CV. Response of liver antioxidant system to taurine in rats fed high fructose diet. Indian J Exp Biol. 2002; 40: 1016–9.
  • Harada H, Tsujino T, Watari Y, Nonaka H, Emoto N, Yokoyama M. Oral taurine supplementation prevents fructose-induced hypertension in rats. Heart Vessels. 2004; 19: 132–6.
  • Nandhini AT, Anuradha CV. Hoe 140 abolishes the blood pressure lowering effect of taurine in high fructose-fed rats. Amino Acids. 2004; 26: 299–303.
  • Nandhini AT, Thirunavukkarasu V, Anuradha CV. Potential role of kinins in the effects of taurine in high-fructose-fed rats. Can J Physiol Pharmacol. 2004; 82: 1–8.
  • Nandhini AT, Thirunavukkarasu V, Anuradha CV. Taurine modifies insulin signaling enzymes in the fructose-fed insulin resistant rats. Diabetes Metab. 2005; 31: 337–44.
  • Nandhini AT, Thirunavukkarasu V, Anuradha CV. Taurine prevents collagen abnormallities in high fructose-fed rats. Indian J Med Res. 2005; 122: 171–7.
  • Nandhini TA, Thirunavukkarasu V, Ravichandran MK, Anuradha CV. Taurine prevents fructose-diet induced collagen abnormalities in rat skin. J Diabetes Complications. 2005; 19: 305–11.
  • Nandhini AT, Thirunavukkarasu V, Ravichandran MK, Anuradha CV. Effect of taurine on biomarkers of oxidative stress in tissues of fructose-fed insulin-resistant rats. Singapore Med J. 2005; 46: 82–7.
  • El Mesallamy HO, El-Demerdash E, Hammad LN, El Magdoub HM. Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance. Diabetol Metab Syndr. 2010; 2: 46.
  • Rahman MM, Park HM, Kim SJ, Go HK, Kim GB, Hong CU, Lee YU, Kim SZ, Kim JS, Kang HS. Taurine prevents hypertension and increases exercise capacity in rats with fructose-induced hypertension. Am J Hypertens. 2011 Feb 3. [Epub ahead of print].
  • Malone JI, Benford SA, Malone J Jr. Taurine prevents galactose-induced cataracts. J Diabetes Complications. 1993; 7: 44–8.
  • Huang JS, Chuang LY, Guh JY, Yang YL, Hsu MS. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells. Toxicol Appl Pharmacol. 2008; 233: 220–6.
  • Huang JS, Chuang LY, Guh JY, Huang YJ. Effects of nitric oxide and antioxidants on advanced glycation end products-induced hypertrophic growth in human renal tubular cells. Toxicol Sci. 2009; 111: 109–19.
  • Nonaka H, Tsujino T, Watari Y, Emoto N, Yokoyama M. Taurine prevents the decrease in expression and secretion of extracellular superoxide dismutase induced by homocysteine: amelioration of homocysteine-induced endoplasmic reticulum stress by taurine. Circulation. 2001; 104: 1165–70.
  • Chang L, Xu J, Yu F, Zhao J, Tang X, Tang C. Taurine protected myocardial mitochondria injury induced by hyperhomocysteinemia in rats. Amino Acids. 2004; 27: 37–48.
  • Chang L, Xu JX, Zhao J, Pang YZ, Tang CS, Qi YF. Taurine antagonized oxidative stress injury induced by homocysteine in rat vascular smooth muscle cells. Acta Pharmacol Sin. 2004; 25: 341–6.
  • Chang L, Zhao J, Xu J, Jiang W, Tang CS, Qi YF. Effects of taurine and homocysteine on calcium homeostasis and hydrogen peroxide and superoxide anions in rat myocardial mitochondria. Clin Exp Pharmacol Physiol. 2004; 31: 237–43.
  • Li W, Li J, Deng B, Tian Y. [Effects of taurine on the heart defects in chick embryos which induced by homocysteine]. [Article in Chinese]. Wei Sheng Yan Jiu. 2004; 33: 183–5.
  • Balasubramanian T, Somasundaram M, Felix AJ. Taurine prevents ibuprofen-induced gastric mucosal lesions and influences endogenous antioxidant status of stomach in rats. ScientificWorldJournal. 2004; 4: 1046–54.
  • Son M, Kim HK, Kim WB, Yang J, Kim BK. Protective effect of taurine on indomethacin-induced gastric mucosal injury. Adv Exp Med Biol. 1996; 403: 147–55.
  • Motawi TK, Abd Elgawad HM, Shahin NN. Modulation of indomethacin-induced gastric injury by spermine and taurine in rats. J Biochem Mol Toxicol. 2007; 21: 280–8.
  • Izumi K, Nagata R, Motoya T, Yamashita J, Hirokane T, Nagata T, Satoh Y, Sawada Y, Ishibashi M, Yoshida H, et al. Preventive effect of taurine against acute paraquat intoxication in beagles. Jpn J Pharmacol. 1989; 50: 229–33.
  • Nagata T, Masaoka T, Akahori F. Protective effect of taurine against acute paraquat intoxication in rats. J Toxicol Sci. 1991; 16: 11–27.
  • Nakashima T, Taniko T, Kuriyama K. Therapeutic effect of taurine administration on carbon tetrachloride-induced hepatic injury. Jpn J Pharmacol. 1982; 32: 583–9.
  • Waterfield CJ, Mesquita M, Parnham P, Timbrell JA. Taurine protects against the cytotoxicity of hydrazine, 1,4-naphthoquinone and carbon tetrachloride in isolated rat hepatocytes. Biochem Pharmacol. 1993; 46: 589–95.
  • Waterfield CJ, Turton JA, Scales MD, Timbrell JA. Reduction of liver taurine in rats by beta-alanine treatment increases carbon tetrachloride toxicity. Toxicology. 1993; 77: 7–20.
  • Waterfield CJ, Mesquita M, Parnham P, Timbrell JA. Cytoprotective effects of taurine in isolated rat hepatocytes. Toxicol In Vitro. 1994; 8: 573–5.
  • Wu C, Miyagawa C, Kennedy DO, Yano Y, Otani S, Matsui-Yuasa I. Involvement of polyamines in the protection of taurine against the cytotoxicity of hydrazine or carbon tetrachloride in isolated rat hepatocytes. Chem Biol Interact. 1997; 103: 213–24.
  • Chen Y, Li S, Zhang X. [Taurine inhibits deposition of extracellular matrix in experimental liver fibrosis in rats]. [Article in Japanese]. Zhonghua Gan Zang Bing Za Zhi. 1999; 7: 165–7.
  • Wu C, Kennedy DO, Yano Y, Otani S, Matsui-Yuasa I. Thiols and polyamines in the cytoprotective effect of taurine on carbon tetrachloride-induced hepatotoxicity. J Biochem Mol Toxicol. 1999; 13: 71–6.
  • Vohra BP, Hui X. Taurine protects against carbon tetrachloride toxicity in the cultured neurons and in vivo. Arch Physiol Biochem. 2001; 109: 90–4.
  • Chen Y, Li S, Zhang X, Zhang Z, Xie W. [Amelioration of carbon tetrachloride-induced hepatic fibrosis in rats by treatment with Salvia miltiorrhiza and taurine]. [Article in Chinese]. Zhonghua Gan Zang Bing Za Zhi. 2002; 10: 148–9.
  • Dinçer S, Ozenirler S, Oz E, Akyol G, Ozoğul C. The protective effect of taurine pretreatment on carbon tetrachloride-induced hepatic damage-a light and electron microscopic study. Amino Acids. 2002; 22: 417–26.
  • Liang J, Zhang XL, Yang GY, Pang YS, Yuan HF, Liang JS, Huang RB. [Observation of the promotion effect taurine on hepatic stellate cell's apoptosis in rat hepatic fibrosis model]. [Article in Chinese]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2005; 36: 365–7.
  • Miyazaki T, Karube M, Matsuzaki Y, Ikegami T, Doy M, Tanaka N, Bouscarel B. Taurine inhibits oxidative damage and prevents fibrosis in carbon tetrachloride-induced hepatic fibrosis. J Hepatol. 2005; 43: 117–25.
  • Tasci I, Mas MR, Vural SA, Deveci S, Comert B, Alcigir G, Mas N, Akay C, Bozdayi M, Yurdaydin C, Bozkaya H, Uzunalimoglu O, Isik AT, Said HM. Pegylated interferon-alpha plus taurine in treatment of rat liver fibrosis. World J Gastroenterol. 2007; 13: 3237–44.
  • Miyazaki T, Bouscarel B, Ikegami T, Honda A, Matsuzaki Y. The protective effect of taurine against hepatic damage in a model of liver disease and hepatic stellate cells. Adv Exp Med Biol. 2009; 643: 293–303.
  • Devamanoharan PS, Ali AH, Varma SD. Oxidative stress to rat lens in vitro: protection by taurine. Free Radic Res. 1998; 29: 189–95.
  • Mas MR, Isik AT, Yamanel L, Inal V, Tasci I, Deveci S, Mas N, Comert B, Akay C. Antioxidant treatment with taurine ameliorates chronic pancreatitis in an experimental rat model. Pancreas. 2006; 33: 77–81.
  • Giriş M, Depboylu B, Doğru-Abbasoğlu S, Erbil Y, Olgaç V, Aliş H, et al. Effect of taurine on oxidative stress and apoptosis-related protein expression in trinitrobenzene sulphonic acid-induced colitis. Clin Exp Immunol. 2008; 152: 102–10.
  • Mahalakshmi K, Pushpakiran G, Anuradha CV. Taurine prevents acrylonitrile-induced oxidative stress in rat brain. Pol J Pharmacol. 2003; 55: 1037–43.
  • Ebrahim AS, Babu E, Thirunavukkarasu C, Sakthisekaran D. Protective role of vitamin E, 2-deoxy-D-glucose, and taurine on perchloroethylene induced alterations in ATPases. Drug Chem Toxicol. 2001; 24: 429–37.
  • Seabra V, Timbrell JA. Modulation of taurine levels in the rat liver alters methylene dianiline hepatotoxicity. Toxicology. 1997; 122: 193–204.
  • Sinha M, Manna P, Sil PC. Taurine, a conditionally essential amino acid, ameliorates arsenic-induced cytotoxicity in murine hepatocytes. Toxicol In Vitro. 2007; 21: 1419–28.
  • Flora SJ, Chouhan S, Kannan GM, Mittal M, Swarnkar H. Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats. Oxid Med Cell Longev. 2008; 1: 39–45.
  • Das J, Ghosh J, Manna P, Sinha M, Sil PC. Taurine protects rat testes against NaAsO(2)-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett. 2009; 187: 201–10.
  • Das J, Ghosh J, Manna P, Sinha M, Sil PC. Arsenic-induced oxidative cerebral disorders: protection by taurine. Drug Chem Toxicol. 2009; 32: 93–102.
  • Ghosh J, Das J, Manna P, Sil PC. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway. Toxicol Appl Pharmacol. 2009; 240: 73–87.
  • Li Z, Piao F, Liu S, Shen L, Sun N, Li B, Qu S. Preventive effects of taurine and vitamin C on renal DNA damage of mice exposed to arsenic. J Occup Health. 2009; 51: 169–72.
  • Roy A, Manna P, Sil PC. Prophylactic role of taurine on arsenic mediated oxidative renal dysfunction via MAPKs/ NF-kappaB and mitochondria dependent pathways. Free Radic Res. 2009; 43: 995–1007.
  • Das J, Ghosh J, Manna P, Sil PC. Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCdelta-JNK pathway. PLoS One. 2010; 5: e12602.
  • Ma N, Sasoh M, Kawanishi S, Sugiura H, Piao F. Protection effect of taurine on nitrosative stress in the mice brain with chronic exposure to arsenic. J Biomed Sci. 2010; 17(Suppl 1): S7.
  • Hwang DF, Wang LC. Effect of taurine on toxicity of cadmium in rats. Toxicology. 2001; 167: 173–80.
  • Manna P, Sinha M, Sil PC. Amelioration of cadmium-induced cardiac impairment by taurine. Chem Biol Interact. 2008; 174: 88–97.
  • Manna P, Sinha M, Sil PC. Cadmium induced testicular pathophysiology: prophylactic role of taurine. Reprod Toxicol. 2008; 26: 282–91.
  • Sinha M, Manna P, Sil PC. Cadmium-induced neurological disorders: prophylactic role of taurine. J Appl Toxicol. 2008; 28: 974–86.
  • Sinha M, Manna P, Sil PC. Taurine protects the antioxidant defense system in the erythrocytes of cadmium treated mice. BMB Rep. 2008; 41: 657–63.
  • Kumar P, Prasad Y, Patra AK, Ranjan R, Swarup D, Patra RC, Pal S. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus). Sci Total Environ. 2009; 407: 5024–30.
  • Manna P, Sinha M, Sil PC. Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids. 2009; 36: 417–28.
  • Sinha M, Manna P, Sil PC. Induction of necrosis in cadmium-induced hepatic oxidative stress and its prevention by the prophylactic properties of taurine. J Trace Elem Med Biol. 2009; 23: 300–13.
  • Jagadeesan G, Sankarsami Pillai S. Hepatoprotective effects of taurine against mercury induced toxicity in rats. J Environ Biol. 2007; 28: 753–6.
  • Neal R, Cooper K, Kellogg G, Gurer H, Ercal N. Effects of some sulfur-containing antioxidants on lead-exposed lenses. Free Radic Biol Med. 1999; 26: 239–43.
  • Hu JD, Gao QH, Yu DG, Xu XT. [The improvement of taurine in learning and memory ability of rats exposed to lead].[Article in Chinese]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2003; 21: 413–6.
  • Yang F, Li JS, Yan P, Liu YH, Wang DN. [Effect of taurine on NOS activity in hippocampus of rat exposed lead]. [Article in Chinese]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2004; 22: 203–6.
  • Zhu DM, Wang M, She JQ, Yu K, Ruan DY. Protection by a taurine supplemented diet from lead-induced deficits of long-term potentiation/depotentiation in dentate gyrus of rats in vivo. Neuroscience. 2005; 134: 215–24.
  • Yu SS, Wang M, Li XM, Chen WH, Chen JT, Wang HL, Ruan DY. Influences of different developmental periods of taurine supplements on synaptic plasticity in hippocampal CA1 area of rats following prenatal and perinatal lead exposure. BMC Dev Biol. 2007; 7: 51.
  • Fan G, Feng C, Li Y, Wang C, Yan J, Li W, Feng J, Shi X, Bi Y. Selection of nutrients for prevention or amelioration of lead-induced learning and memory impairment in rats. Ann Occup Hyg. 2009; 53: 341–51.
  • Hwang DF, Wang LC, Cheng HM. Effect of taurine on toxicity of copper in rats. Food Chem Toxicol. 1998; 36: 239–44.
  • Pasantes-Morales H, Wright CE, Gaull GE. Taurine protection of lymphoblastoid cells from iron-ascorbate induced damage. Biochem Pharmacol. 1985; 34: 2205–7.
  • Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH. Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation. 2004; 109: 1877–85.
  • Otto-Duessel M, Aguilar M, Moats R, Wood JC. Antioxidant-mediated effects in a gerbil model of iron overload. Acta Haematol. 2007; 118: 193–9.
  • Schuller-Levis G, Quinn MR, Wright C, Park E. Taurine protects against oxidant-induced lung injury: possible mechanism(s) of action. Adv Exp Med Biol. 1994; 359: 31–9.
  • Qi B, Yamagami T, Naruse Y, Sokejima S, Kagamimori S. Effects of taurine on depletion of erythrocyte membrane Na-K ATPase activity due to ozone exposure or cholesterol enrichment. J Nutr Sci Vitaminol (Tokyo). 1995; 41: 627–34.
  • Schuller-Levis GB, Gordon RE, Park E, Pendino KJ, Laskin DL. Taurine protects rat bronchioles from acute ozone-induced lung inflammation and hyperplasia. Exp Lung Res. 1995; 21: 877–88.
  • Gordon RE, Park E, Laskin D, Schuller-Levis GB. Taurine protects rat bronchioles from acute ozone exposure: a freeze fracture and electron microscopic study. Exp Lung Res. 1998; 24: 659–74.
  • Rivas-Arancibia S, Dorado-Martínez C, Borgonio-Pérez G, Hiriart-Urdanivia M, Verdugo-Diaz L, Durán-Vázquez A, Colin-Baranque L, Avila-Costa MR. Effects of taurine on ozone-induced memory deficits and lipid peroxidation levels in brains of young, mature, and old rats. Environ Res. 2000; 82: 7–17.
  • Gordon RE, Shaked AA, Solano DF. Taurine protects hamster bronchioles from acute NO2-induced alterations. A histologic, ultrastructural, and freeze-fracture study. Am J Pathol. 1986; 125: 585–600.
  • Ogasawara M, Nakamura T, Koyama I, Nemoto M, Yoshida T. Reactivity of taurine with aldehydes and its physiological role. Chem Pharm Bull (Tokyo). 1993; 41: 2172–5.
  • Ogasawara M, Nakamura T, Koyama I, Nemoto M, Yoshida T. Reactivity of taurine with aldehydes and its physiological role. Adv Exp Med Biol. 1994; 359: 71–8.
  • Li G, Tang T, Peng M, He H, Yin D. Direct reaction of taurine with malondialdehyde: evidence for taurine as a scavenger of reactive carbonyl species. Redox Rep. 2010; 15: 268–74.
  • Marcinkiewicz J, Chain B, Nowak B, Grabowska A, Bryniarski K, Baran J. Antimicrobial and cytotoxic activity of hypochlorous acid: interactions with taurine and nitrite. Inflamm Res. 2000; 49: 280–9.
  • Marcinkiewicz J, Mak M, Bobek M, Biedroń R, Bialecka A, Koprowski M, Kontny E, Maśliński W. Is there a role of taurine bromamine in inflammation? Interactive effects with nitrite and hydrogen peroxide. Inflamm Res. 2005; 54: 42–9.
  • Marcinkiewicz J, Biedroń R, Bialecka A, Kasprowicz A, Mak M, Targosz M. Susceptibility of Propionibacterium acnes and Staphylococcus epidermidis to killing by MPO-halide system products. Implication for taurine bromamine as a new candidate for topical therapy in treating acne vulgaris. Arch Immunol Ther Exp (Warsz). 2006; 54: 61–8.
  • Kim C, Kim S. Taurine chloramine inhibits LPS-induced glucose uptake and glucose transporter 1 expression in RAW 264.7 macrophages. Adv Exp Med Biol. 2009; 643: 473–80.
  • Zulli A. Taurine in cardiovascular disease. Curr Opin Clin Nutr Metab Care. 2011; 14: 57–60.
  • Martinez-Losa M, Cortijo J, Piqueras L, Sanz MJ, Morcillo EJ. Taurine chloramine inhibits functional responses of human eosinophils in vitro. Clin Exp Allergy. 2009; 39: 537–46.
  • Kontny E, Rudnicka W, Chorazy-Massalska M, Marcinkiewicz J, Maśliński W. Taurine chloramine inhibits proliferation of rheumatoid arthritis synoviocytes by triggering a p53-dependent pathway. Inflamm Res. 2006; 55: 446–55.
  • Marcinkiewicz J, Kurnyta M, Biedroń R, Bobek M, Kontny E, Maśliński W. Anti-inflammatory effects of taurine derivatives (taurine chloramine, taurine bromamine, and taurolidine) are mediated by different mechanisms. Adv Exp Med Biol. 2006; 583: 481–92.
  • Muz B, Kontny E, Marcinkiewicz J, Maśliński W. Heme oxygenase-1 participates in the anti-inflammatory activity of taurine chloramine. Amino Acids. 2008; 35: 397–402.
  • Kanayama A, Inoue J, Sugita-Konishi Y, Shimizu M, Miyamoto Y. Oxidation of Ikappa Balpha at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-kappa B activation. J Biol Chem. 2002; 277: 24049–56.
  • Ogino T, Hosako M, Hiramatsu K, Omori M, Ozaki M, Okada S. Oxidative modification of IkappaB by monochloramine inhibits tumor necrosis factor alpha-induced NF-kappaB activation. Biochim Biophys Acta. 2005; 1746: 135–42.
  • Midwinter RG, Cheah FC, Moskovitz J, Vissers MC, Winterbourn CC. IkappaB is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-kappaB activity by glycine chloramine through methionine oxidation. Biochem J. 2006; 396: 71–8.
  • Tokunaga S, Kanayama A, Miyamoto Y. Modification of IkappaBalpha by taurine bromamine inhibits tumor necrosis factor alpha-induced NF-kappaB activation. Inflamm Res. 2007; 56: 479–86.
  • Hart LA, Krishnan VL, Adcock IM, Barnes PJ, Chung KF. Activation and localization of transcription factor, nuclear factor-kappaB, in asthma. Am J Respir Crit Care Med. 1998; 158: 1585–92.
  • Dong G, Chen Z, Kato T, Van Waes C. The host environment promotes the constitutive activation of nuclear factor-kappaB and proinflammatory cytokine expression during metastatic tumor progression of murine squamous cell carcinoma. Cancer Res. 1999; 59: 3495–504.
  • Gan HT, Chen YQ, Ouyang Q. Sulfasalazine inhibits activation of nuclear factor-kappaB in patients with ulcerative colitis. J Gastroenterol Hepatol. 2005; 20: 1016–24.
  • Kramer JH, Chovan JP, Schaffer SW. Effect of taurine on calcium paradox and ischemic heart failure. Am J Physiol. 1981; 240: H238–46.
  • Pukhova TM, Zhuchkova NI. [The effect of taurine on the density of adrenergic nerve endings and the recovery of cardiac function after ischemia]. [Article in Russian]. Biull Eksp Biol Med. 1991; 111: 241–4.
  • Milei J, Ferreira R, Llesuy S, Forcada P, Covarrubias J, Boveris A. Reduction of reperfusion injury with preoperative rapid intravenous infusion of taurine during myocardial revascularization. Am Heart J. 1992; 123: 339–45.
  • Kapel'ko VI, Pisarenko OI, Pukhova TM, Lakomkin VL, Solomatina ES, Studneva IM, Novikova NA. [Modifications to the solution for reperfusion of the ischemic heart]. [Article in Russian]. Kardiologiia. 1993; 33: 71–4, 7.
  • Raschke P, Massoudy P, Becker BF. Taurine protects the heart from neutrophil-induced reperfusion injury. Free Radic Biol Med. 1995; 19: 461–71.
  • Chahine R, Feng J. Protective effects of taurine against reperfusion-induced arrhythmias in isolated ischemic rat heart. Arzneimittelforschung. 1998; 48: 360–4.
  • Satoh H, Sperelakis N. Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen Pharmacol. 1998; 30: 451–63.
  • Oz E, Erbaş D, Gelir E, Aricioğlu A. Taurine and calcium interaction in protection of myocardium exposed to ischemic reperfusion injury. Gen Pharmacol. 1999; 33: 137–41.
  • Takahashi K, Ohyabu Y, Schaffer SW, Azuma J. Taurine prevents ischemia damage in cultured neonatal rat cardiomyocytes. Adv Exp Med Biol. 2000; 483: 109–16.
  • Takahashi K, Ohyabu Y, Takahashi K, Solodushko V, Takatani T, Itoh T, Schaffer SW, Azuma J. Taurine renders the cell resistant to ischemia-induced injury in cultured neonatal rat cardiomyocytes. J Cardiovasc Pharmacol. 2003; 41: 726–33.
  • Hanna J, Chahine R, Aftimos G, Nader M, Mounayar A, Esseily F, Chamat S. Protective effect of taurine against free radicals damage in the rat myocardium. Exp Toxicol Pathol. 2004; 56: 189–94.
  • Kingston R, Kelly CJ, Murray P. The therapeutic role of taurine in ischaemia-reperfusion injury. Curr Pharm Des. 2004; 10: 2401–10.
  • Li AY, Ji ES, Zhao SM, Ma ZH, Li Q. [Effects of taurine on rabbit cardiomyocyte apoptosis during ischemia/reperfusion injury]. [Article in Chinese]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2004; 20: 224–7.
  • Takatani T, Takahashi K, Uozumi Y, Matsuda T, Ito T, Schaffer SW, Fujio Y, Azuma J. Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochem Biophys Res Commun. 2004; 316: 484–9.
  • Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer SW, Fujio Y, Azuma J. Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol. 2004; 287: C949–53.
  • Oriyanhan W, Yamazaki K, Miwa S, Takaba K, Ikeda T, Komeda M. Taurine prevents myocardial ischemia/reperfusion-induced oxidative stress and apoptosis in prolonged hypothermic rat heart preservation. Heart Vessels. 2005; 20: 278–85.
  • Oriyanhan W, Miyamoto TA, Yamazaki K, Miwa S, Takaba K, Ikeda T, Komeda M. Regionally perfused taurine. Part I. Minimizes lactic acidosis and preserves CKMB and myocardial contractility after ischemia/reperfusion. Adv Exp Med Biol. 2006; 583: 271–88.
  • Takahashi K, Takatani T, Uozumi Y, Ito T, Matsuda T, Fujio Y, Schaffer SW, Azuma J. Molecular mechanisms of cardioprotection by taurine on ischemia-induced apoptosis in cultured cardiomyocytes. Adv Exp Med Biol. 2006; 583: 257–63.
  • Ueno T, Iguro Y, Yotsumoto G, Fukumoto Y, Nakamura K, Miyamoto TA, Sakata R. Taurine at early reperfusion significantly reduces myocardial damage and preserves cardiac function in the isolated rat heart. Resuscitation. 2007; 73: 287–95.
  • Briet F, Keith M, Leong-Poi H, Kadakia A, Aba-Alkhail K, Giliberto JP, Stewart D, Errett L, David Mazer C. Triple nutrient supplementation improves survival, infarct size and cardiac function following myocardial infarction in rats. Nutr Metab Cardiovasc Dis. 2008; 18: 691–9.
  • Doddakula KK, Neary PM, Wang JH, Sookhai S, O'Donnell A, Aherne T, Bouchier-Hayes DJ, Redmond HP. The antiendotoxin agent taurolidine potentially reduces ischemia/reperfusion injury through its metabolite taurine. Surgery. 2010; 148: 567–72.
  • Kulthinee S, Wyss JM, Jirakulsomchok D, Roysommuti S. High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats. J Biomed Sci. 2010; 17(Suppl 1): S22.
  • McLaughlin R, Bowler D, Kelly CJ, Kay E, Bouchier-Hayes D. Taurine protects against early and late skeletal muscle dysfunction secondary to ischaemia reperfusion injury. Eur J Surg. 2000; 166: 375–9.
  • Kingston R, Kearns S, Kelly C, Murray P. Effects of systemic and regional taurine on skeletal muscle function following ischaemia-reperfusion injury. J Orthop Res. 2005; 23: 310–4.
  • Wang JX, Li Y, Zhang LK, Zhao J, Pang YZ, Tang CS, Zhang J. Taurine inhibits ischemia/reperfusion-induced compartment syndrome in rabbits. Acta Pharmacol Sin. 2005; 26: 821–7.
  • Zhang N, Zhang LY, Wang YH, Dong SY, Kong XY, Zhao LJ. [Effects of taurine on TNF-alpha and NF-kappaB expression of liver injury after limbs ischemia/reperfusion in rats]. [Article in Chinese]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2009; 25: 18–21.
  • Akdemir O, Hede Y, Zhang F, Lineaweaver WC, Arslan Z, Songur E. Effects of taurine on reperfusion injury. J Plast Reconstr Aesthet Surg. 2011 Jan 21. [Epub ahead of print].
  • Chen YX. [Protective action of taurine on ischemia-reperfusion liver injury in rats and its mechanism]. [Article in Chinese]. Zhonghua Yi Xue Za Zhi. 1993; 73(276–9): 318–9.
  • Minor T, Yamaguchi T, Isselhard W. Effects of taurine on liver preservation in UW solution with consecutive ischemic rewarming in the isolated perfused rat liver. Transpl Int. 1995; 8: 174–9.
  • Minor T, Yamaguchi T, Klauke H, Wingenfeld P, Michalk D, Isselhard W. Taurine reduces experimental liver injury after cold ischemic preservation and a period of rewarming prior to reperfusion. Adv Exp Med Biol. 1996; 403: 157–61.
  • Wettstein M, Häussinger D. Cytoprotection by the osmolytes betaine and taurine in ischemia-reoxygenation injury in the perfused rat liver. Hepatology. 1997; 26: 1560–6.
  • Wettstein M, Häussinger D. Taurine attenuates cold ischemia-reoxygenation injury in rat liver. Transplantation. 2000; 69: 2290–6.
  • Lauschke H, Kötting M, Akbar S, Minor T. Use of taurine as antioxidant in resuscitating livers from non-heart-beating donors by gaseous oxygen persufflation. J Invest Surg. 2003; 16: 7–11.
  • Schemmer P, Liang R, Kincius M, Flechtenmacher C, Bunzendahl H, Gutt CN, Mehrabi A, Gebhard MM, Büchler MW, Kraus TW. Taurine improves graft survival after experimental liver transplantation. Liver Transpl. 2005; 11: 950–9.
  • Tong L, Li J, Qiao H, Jiang H, Meng F, Sun X. Taurine protects against ischemia-reperfusion injury in rabbit livers. Transplant Proc. 2006; 38: 1575–9.
  • Kincius M, Liang R, Nickkholgh A, Hoffmann K, Flechtenmacher C, Ryschich E, Gutt CN, Gebhard MM, Schmidt J, Büchler MW, Schemmer P. Taurine protects from liver injury after warm ischemia in rats: the role of Kupffer cells. Eur Surg Res. 2007; 39: 275–83.
  • Schindler G, Kincius M, Liang R, Backhaus J, Zorn M, Flechtenmacher C, Gebhard MM, Büchler MW, Schemmer P. Fundamental efforts toward the development of a therapeutic cocktail with a manifold ameliorative effect on hepatic ischemia/reperfusion injury. Microcirculation. 2009; 16: 593–602.
  • Bruns H, Watanpour I, Gebhard MM, Flechtenmacher C, Galli U, Schulze-Bergkamen H, Zorn M, Büchler MW, Schemmer P. Glycine and taurine equally prevent fatty livers from Kupffer cell dependent injury: an in vivo microscopy study. Microcirculation. 2010 Dec 22. 10.3402/mehd.v23i0.14787. [Epub ahead of print].
  • Zhang F, Mao Y, Qiao H, Jiang H, Zhao H, Chen X, Tong L, Sun X. Protective effects of taurine against endotoxin-induced acute liver injury after hepatic ischemia reperfusion. Amino Acids. 2010; 38: 237–45.
  • Michalk DV, Hoffmann B, Minor T. Taurine reduces renal ischemia/reperfusion injury in the rat. Adv Exp Med Biol. 2003; 526: 49–56.
  • Guz G, Oz E, Lortlar N, Ulusu NN, Nurlu N, Demirogullari B, Omeroglu S, Sert S, Karasu C. The effect of taurine on renal ischemia/reperfusion injury. Amino Acids. 2007; 32: 405–11.
  • Guan X, Dei-Anane G, Liang R, Gross ML, Nickkholgh A, Kern M, Ludwig J, Zeier M, Büchler MW, Schmidt J, Schemmer P. Donor preconditioning with taurine protects kidney grafts from injury after experimental transplantation. J Surg Res. 2008; 146: 127–34.
  • Wei SM, Yan ZZ, Zhou J. Beneficial effect of taurine on testicular ischemia-reperfusion injury in rats. Urology. 2007; 70: 1237–42.
  • Namazi H. Novel molecular mechanism to account for action of taurine against testicular ischemia-reperfusion injury. Urology. 2008; 72: 465–6.
  • Wei SM, Yan ZZ, Zhou J. Taurine reduces testicular ischemia/reperfusion-induced neutrophil recruitment to testis probably by downregulation of pro-inflammatory cytokines and E-selectin. Urology. 2008; 72: 464–5.
  • Zhang F, Tong L, Qiao H, Dong X, Qiao G, Jiang H, Sun X. Taurine attenuates multiple organ injury induced by intestinal ischemia reperfusion in rats. J Surg Res. 2008; 149: 101–9.
  • Pessina F, Matteucci G, Esposito L, Gorelli B, Valoti M, Sgaragli G. Protection of intrinsic nerves of guinea-pig detrusor strips against anoxia/glucopenia and reperfusion injury by taurine. Adv Exp Med Biol. 2000; 483: 325–33.
  • Oz E, Sivrikoz MC, Halit V, Altunkaya A, Take G. The role of taurine added to pulmonary reperfusion solutions in isolated guinea pig lungs. Amino Acids. 2002; 22: 391–403.
  • Guo J, Li R, Zhao P, Cheng J. Effect of taurine in combination with electroacupuncture on neuronal damage following transient focal cerebral ischemia in rats. Acupunct Electrother Res. 2002; 27: 129–36.
  • Li M, Gao GD, Zheng J, Sun LZ, Long C. [Effects of taurine on early changes of excitatory amino acids in rabbit brain due to deep hypothermic circulatory arrest]. [Article in Chinese]. Zhonghua Wai Ke Za Zhi. 2005; 43: 362–5.
  • Molchanova SM, Oja SS, Saransaari P.2006; 1099: 64–72.
  • Wang GH, Jiang ZL, Fan XJ, Zhang L, Li X, Ke KF. Neuroprotective effect of taurine against focal cerebral ischemia in rats possibly mediated by activation of both GABAA and glycine receptors. Neuropharmacology. 2007; 52: 1199–209.
  • Sun M, Xu C. Neuroprotective mechanism of taurine due to up-regulating calpastatin and down-regulating calpain and caspase-3 during focal cerebral ischemia. Cell Mol Neurobiol. 2008; 28: 593–611.
  • Taranukhin AG, Taranukhina EY, Saransaari P, Djatchkova IM, Pelto-Huikko M, Oja SS. Taurine reduces caspase-8 and caspase-9 expression induced by ischemia in the mouse hypothalamic nuclei. Amino Acids. 2008; 34: 169–74.
  • Ricci L, Valoti M, Sgaragli G, Frosini M. Protection by taurine of rat brain cortical slices against oxygen glucose deprivation- and reoxygenation-induced damage. Eur J Pharmacol. 2009; 621: 26–32.
  • Sun M, Gu Y, Zhao Y, Xu C. Protective functions of taurine against experimental stroke through depressing mitochondria-mediated cell death in rats. Amino Acids. 2010 Sep 23. [Epub ahead of print].
  • Sun M, Zhao Y, Gu Y, Xu C. Anti-inflammatory mechanism of taurine against ischemic stroke is related to down-regulation of PARP and NF-κB. Amino Acids. 2011 Mar 16. [Epub ahead of print].
  • Chan PH. Oxygen radicals in focal cerebral ischemia. Brain Pathol. 1994; 4: 59–65.
  • Shi H, Liu KJ. Cerebral tissue oxygenation and oxidative brain injury during ischemia and reperfusion. Front Biosci. 2007; 12: 1318–28.
  • Zhang W, Wang M, Xie HY, Zhou L, Meng XQ, Shi J, Zheng S. Role of reactive oxygen species in mediating hepatic ischemia-reperfusion injury and its therapeutic applications in liver transplantation. Transplant Proc. 2007; 39: 1332–7.
  • Bhogal RH, Curbishley SM, Weston CJ, Adams DH, Afford SC.2010; 16: 1303–13.
  • Kahles T, Kohnen A, Heumueller S, Rappert A, Bechmann I, Liebner S, Wittko IM, Neumann-Haefelin T, Steinmetz H, Schroeder K, Brandes RP. NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice. Neurobiol Dis. 2010; 40: 185–92.
  • Li RC, Guo SZ, Lee SK, Gozal D. Neuroglobin protects neurons against oxidative stress in global ischemia. J Cereb Blood Flow Metab. 2010; 30: 1874–82.
  • Thu VT, Kim HK, Ha SH, Yoo JY, Park WS, Kim N, Oh GT, Han J. Glutathione peroxidase 1 protects mitochondria against hypoxia/reoxygenation damage in mouse hearts. Pflugers Arch. 2010; 460: 55–68.
  • Pasdois P, Parker JC, Griffiths EJ, Halestrap AP. The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochem J. 2011 Mar 17. [Epub ahead of print].
  • Quarrie R, Cramer BM, Lee DS, Steinbaugh GE, Erdahl W, Pfeiffer DR, Zweier JL, Crestanello JA. Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic heart. J Surg Res. 2011; 165: 5–14.
  • Sandin A, Dagnell M, Gonon A, Pernow J, Stangl V, Aspenström P, Kappert K, Ostman A. Hypoxia followed by re-oxygenation induces oxidation of tyrosine phosphatases. Cell Signal. 2011; 23: 820–6.
  • Krasova EI, Nastashenko TA, Onishchenko NA, Seı˘fulla RD, Kuvaev AE. [Effect of alpha-tocopherol acetate and sodium selenite on the change in ATP content and the RNA synthesis rate in the ischemic myocardium]. [Article in Russian]. Farmakol Toksikol. 1979; 42: 251–4.
  • Litvitskiı˘ PF, Kogan AKh, Kudrin AN, Luk'ianova LO. [Pathogenetic role of lipid peroxidation and the protective role of sodium selenite in ischemia and myocardial reperfusion]. [Article in Russian]. Biull Eksp Biol Med. 1981; 91: 271–4.
  • Nath KA, Paller MS. Dietary deficiency of antioxidants exacerbates ischemic injury in the rat kidney. Kidney Int. 1990; 38: 1109–17.
  • Chiba Y, Muraoka R, Noguchi H, Hiramatsu Y, Kimura T, Ihaya A, Morioka K. [Significance of selenium deficiency on myocardial protection of the mature and immature rat hearts]. [Article in Japanese]. Nippon Kyobu Geka Gakkai Zasshi. 1991; 39: 1882–7.
  • Poltronieri R, Cevese A, Sbarbati A. Protective effect of selenium in cardiac ischemia and reperfusion. Cardioscience. 1992; 3: 155–60.
  • Soncul H, Kaptanoğlu M, Oz E, Halit V, Bilgehan A, Cayci B, Gökgöz L, Türkozan N, Ersöz A. The role of selenium added to pulmonary preservation solutions in isolated guinea pig lungs. J Thorac Cardiovasc Surg. 1994; 108: 922–7.
  • Soncul H, Tatlican O, Halit V, Oz E, Sinci V, Salman E, Gökgöz L, Türközkan N, Ersöz A. The effect of selenium added cardioplegia in guinea pigs. Gen Pharmacol. 1994; 25: 1493–7.
  • Erbas D, Soncul H, Turkozkan N, Arioioglu A, Muftugoglu S, Ersoz A. Effect of selenium on ischemic and reperfusion injury in isolated guinea pig lungs. Gen Pharmacol. 1995; 26: 1669–72.
  • Boucher F, Coudray C, Tirard V, Barandier C, Tresallet N, Favier A, de Leiris J. Oral selenium supplementation in rats reduces cardiac toxicity of adriamycin during ischemia and reperfusion. Nutrition. 1995; 11((5 Suppl)): 708–11.
  • Pucheu S, Coudray C, Tresallet N, Favier A, de Leiris J. Effect of dietary antioxidant trace element supply on cardiac tolerance to ischemia-reperfusion in the rat. J Mol Cell Cardiol. 1995; 27: 2303–14.
  • Sinci V, Gunaydin S, Kalaycioglu S, Soncul H, Gokgoz L, Oz E. Effects of selenium enriched reperfusion solutions on isolated guinea pig hearts. Keio J Med. 1998; 47: 219–22.
  • Tanguy S, Boucher F, Besse S, Ducros V, Favier A, de Leiris J. Trace elements and cardioprotection: increasing endogenous glutathione peroxidase activity by oral selenium supplementation in rats limits reperfusion-induced arrhythmias. J Trace Elem Med Biol. 1998; 12: 28–38.
  • Huang Y, Bai H, Zhang Z. [Mechanism of selenium protecting against free radical damages during myocardial ischemia/reperfusion in rats]. [Article in Chinese]. Zhonghua Yi Xue Za Zhi. 1999; 79: 852–6.
  • Huang Y, Liu Y, Zhang Z. [Mechanism of selenium defending against free radical damages during myocardial ischemia/reperfusion in human]. [Article in Chinese]. Zhonghua Yi Xue Za Zhi. 1999; 79: 731–4.
  • Oztürk C, Avlan D, Cinel I, Cinel L, Unlü A, Camdeviren H, Atik U, Oral U. Selenium pretreatment prevents bacterial translocation in rat intestinal ischemia/reperfusion model. Pharmacol Res. 2002; 46: 171–5.
  • Gupta R, Singh M, Sharma A. Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury. Pharmacol Res. 2003; 48: 209–15.
  • Tanguy S, Toufektsian MC, Besse S, Ducros V, De Leiris J, Boucher F. Dietary selenium intake affects cardiac susceptibility to ischaemia/reperfusion in male senescent rats. Age Ageing. 2003; 32: 273–8.
  • Treska V, Kuntscher V, Molácek J, Kobr J, Racek J, Trefil L. Can ischemia-reperfusion syndrome in transplanted kidneys procured from non-heart-beating donors be influenced by adding selenium into the reperfusion solution? An experimental study. Transplant Proc. 2003; 35: 3125–7.
  • Treska V, Kuntscher V, Molácek J, Kobr J, Racek J, Trefil L. Can the ischemia-reperfusion syndrome in transplanted kidneys procured from non-heart-beating donors be influenced by adding selenium into the reperfusion solution? An experimental study. Transplant Proc. 2003; 35: 1584–6.
  • Ansari MA, Ahmad AS, Ahmad M, Salim S, Yousuf S, Ishrat T, Islam F. Selenium protects cerebral ischemia in rat brain mitochondria. Biol Trace Elem Res. 2004; 101: 73–86.
  • Tanguy S, Morel S, Berthonneche C, Toufektsian MC, de Lorgeril M, Ducros V, Tosaki A, de Leiris J, Boucher F. Preischemic selenium status as a major determinant of myocardial infarct size in vivo in rats. Antioxid Redox Signal. 2004; 6: 792–6.
  • Venardos K, Harrison G, Headrick J, Perkins A. Effects of dietary selenium on glutathione peroxidase and thioredoxin reductase activity and recovery from cardiac ischemia-reperfusion. J Trace Elem Med Biol. 2004; 18: 81.
  • Venardos K, Harrison G, Headrick J, Perkins A. Selenium supplementation and ischemia-reperfusion injury in rats. Redox Rep. 2004; 9: 317–20.
  • Avlan D, Erdouğan K, Cimen B, Düşmez Apa D, Cinel I, Aksöyek S. The protective effect of selenium on ipsilateral and contralateral testes in testicular reperfusion injury. Pediatr Surg Int. 2005; 21: 274–8.
  • Rakotovao A, Tanguy S, Toufektsian MC, Berthonneche C, Ducros V, Tosaki A, de Leiris J, Boucher F. Selenium status as determinant of connexin-43 dephosphorylation in ex vivo ischemic/reperfused rat myocardium. J Trace Elem Med Biol. 2005; 19: 43–7.
  • Turan B, Saini HK, Zhang M, Prajapati D, Elimban V, Dhalla NS. Selenium improves cardiac function by attenuating the activation of NF-kappaB due to ischemia-reperfusion injury. Antioxid Redox Signal. 2005; 7: 1388–97.
  • Venardos K, Ashton K, Headrick J, Perkins A. Effects of dietary selenium on post-ischemic expression of antioxidant mRNA. Mol Cell Biochem. 2005; 270: 131–8.
  • Lymbury R, Venardos K, Perkins AV. Effect of sodium selenite-enriched reperfusion solutions on rat cardiac ischemia reperfusion injury. Biol Trace Elem Res. 2006; 114: 197–206.
  • Ostadalova I, Vobecky M, Chvojkova Z, Mikova D, Hampl V, Wilhelm J, Ostadal B. Selenium protects the immature rat heart against ischemia/reperfusion injury. Mol Cell Biochem. 2007; 300: 259–67.
  • Venardos KM, Perkins A, Headrick J, Kaye DM. Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr Med Chem. 2007;14:1539-49. Erratum in: Curr Med Chem. 2007;14:2944. Perkins, Anthony [added]; Headrick, John [added].
  • Yousuf S, Atif F, Ahmad M, Hoda MN, Khan MB, Ishrat T, Islam F. Selenium plays a modulatory role against cerebral ischemia-induced neuronal damage in rat hippocampus. Brain Res. 2007; 1147: 218–25.
  • Erbil G, Ozbal S, Sonmez U, Pekcetin C, Tugyan K, Bagriyanik A, Ozogul C. Neuroprotective effects of selenium and Ginkgo biloba extract (EGb761) against ischemia and reperfusion injury in rat brain. Neurosciences (Riyadh). 2008; 13: 233–8.
  • Ozbal S, Erbil G, Koçdor H, Tuğyan K, Pekçetin C, Ozoğul C. The effects of selenium against cerebral ischemia-reperfusion injury in rats. Neurosci Lett. 2008; 438: 265–9.
  • Zapletal C, Heyne S, Breitkreutz R, Gebhard MM, Golling M. The influence of selenium substitution on microcirculation and glutathione metabolism after warm liver ischemia/reperfusion in a rat model. Microvasc Res. 2008; 76: 104–9.
  • Tanguy S, Rakotovao A, Jouan MG, Ghezzi C, de Leiris J, Boucher F. Dietary selenium intake influences Cx43 dephosphorylation, TNF-α expression and cardiac remodeling after reperfused infarction. Mol Nutr Food Res. 2010 Dec 15. [Epub ahead of print].
  • Wang GS, Geng DQ, Wang YW, Chen XD, Yang TH, Chang CH. [Protective effect of Na2SeO3 against cerebral ischemia-reperfusion injury to the hippocampal neurons in rats]. [Article in Chinese]. Nan Fang Yi Ke Da Xue Xue Bao. 2010; 30: 2336–9.
  • Blaustein A, Deneke SM, Stolz RI, Baxter D, Healey N, Fanburg BL. Myocardial glutathione depletion impairs recovery after short periods of ischemia. Circulation. 1989; 80: 1449–57.
  • Singh A, Lee KJ, Lee CY, Goldfarb RD, Tsan MF. Relation between myocardial glutathione content and extent of ischemia-reperfusion injury. Circulation. 1989; 80: 1795–804.
  • Nishinaka Y, Kitahara S, Sugiyama S, Yokota M, Saito H, Ozawa T. The cardioprotective effect of gamma-glutamylcysteine ethyl ester during coronary reperfusion in canine hearts. Br J Pharmacol. 1991; 104: 805–10.
  • Werns SW, Fantone JC, Ventura A, Lucchesi BR. Myocardial glutathione depletion impairs recovery of isolated blood-perfused hearts after global ischaemia. J Mol Cell Cardiol. 1992; 24: 1215–20.
  • Guarnieri C, Turinetto B, Colì G, Muscari C, Cattabriga I, Vaona I, Finelli C, Pigini F, Caldarera CM. Effect of glutathione monoethyl ester on glutathione level and cardiac energetics in reperfused pig heart. Res Commun Chem Pathol Pharmacol. 1993; 81: 33–44.
  • Nakano H, Boudjema K, Alexandre E, Imbs P, Chenard MP, Wolf P, Cinqualbre J, Jaeck D. Protective effects of N-acetylcysteine on hypothermic ischemia-reperfusion injury of rat liver. Hepatology. 1995; 22: 539–45.
  • Nakano H, Nagasaki H, Barama A, Boudjema K, Jaeck D, Kumada K, Tatsuno M, Baek Y, Kitamura N, Suzuki T, Yamaguchi M. The effects of N-acetylcysteine and anti-intercellular adhesion molecule-1 monoclonal antibody against ischemia-reperfusion injury of the rat steatotic liver produced by a choline-methionine-deficient diet. Hepatology. 1997; 26: 670–8.
  • Nakano H, Nagasaki H, Yoshida K, Kigawa G, Fujiwara Y, Kitamura N, Kuzume M, Takeuchi S, Sasaki J, Shimura H, Yamaguchi M, Kumada K. N-acetylcysteine and anti-ICAM-1 monoclonal antibody reduce ischemia-reperfusion injury of the steatotic rat liver. Transplant Proc. 1998; 30: 3763.
  • Bilzer M, Paumgartner G, Gerbes AL. Glutathione protects the rat liver against reperfusion injury after hypothermic preservation. Gastroenterology. 1999; 117: 200–10.
  • Grattagliano I, Vendemiale G, Lauterburg BH. Reperfusion injury of the liver: role of mitochondria and protection by glutathione ester. J Surg Res. 1999; 86: 2–8.
  • Paterson PG, Juurlink BH. Nutritional regulation of glutathione in stroke. Neurotox Res. 1999; 1: 99–112.
  • Cheung PY, Wang W, Schulz R. Glutathione protects against myocardial ischemia-reperfusion injury by detoxifying peroxynitrite. J Mol Cell Cardiol. 2000; 32: 1669–78.
  • Leichtweis S, Ji LL. Glutathione deficiency intensifies ischaemia-reperfusion induced cardiac dysfunction and oxidative stress. Acta Physiol Scand. 2001; 172: 1–10.
  • Leichtweis S, Leeuwenburgh C, Bejma J, Ji LL. Aged rat hearts are not more susceptible to ischemia-reperfusion injury in vivo: role of glutathione. Mech Ageing Dev. 2001; 122: 503–18.
  • Ramires PR, Ji LL. Glutathione supplementation and training increases myocardial resistance to ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol. 2001; 281: H679–88.
  • Bilzer M, Baron A, Schauer R, Steib C, Ebensberger S, Gerbes AL. Glutathione treatment protects the rat liver against injury after warm ischemia and Kupffer cell activation. Digestion. 2002; 66: 49–57.
  • Bobyn PJ, Franklin JL, Wall CM, Thornhill JA, Juurlink BH, Paterson PG. The effects of dietary sulfur amino acid deficiency on rat brain glutathione concentration and neural damage in global hemispheric hypoxia-ischemia. Nutr Neurosci. 2002; 5: 407–16.
  • Shen WH, Zhang CY, Zhang GY. Antioxidants attenuate reperfusion injury after global brain ischemia through inhibiting nuclear factor-kappa B activity in rats. Acta Pharmacol Sin. 2003; 24: 1125–30.
  • Anderson MF, Nilsson M, Eriksson PS, Sims NR. Glutathione monoethyl ester provides neuroprotection in a rat model of stroke. Neurosci Lett. 2004; 354: 163–5.
  • Anderson MF, Nilsson M, Sims NR. Glutathione monoethylester prevents mitochondrial glutathione depletion during focal cerebral ischemia. Neurochem Int. 2004; 44: 153–9.
  • Kupatt C, Hinkel R, Horstkotte J, Deiss M, von Brühl ML, Bilzer M, Boekstegers P. Selective retroinfusion of GSH and cariporide attenuates myocardial ischemia-reperfusion injury in a preclinical pig model. Cardiovasc Res. 2004; 61: 530–7.
  • Schauer RJ, Gerbes AL, Vonier D, Meissner H, Michl P, Leiderer R, Schildberg FW, Messmer K, Bilzer M. Glutathione protects the rat liver against reperfusion injury after prolonged warm ischemia. Ann Surg. 2004; 239: 220–31.
  • Schauer RJ, Kalmuk S, Gerbes AL, Leiderer R, Meissner H, Schildberg FW, Messmer K, Bilzer M. Intravenous administration of glutathione protects parenchymal and non-parenchymal liver cells against reperfusion injury following rat liver transplantation. World J Gastroenterol. 2004; 10: 864–70.
  • Sims NR, Nilsson M, Muyderman H. Mitochondrial glutathione: a modulator of brain cell death. J Bioenerg Biomembr. 2004; 36: 329–33.
  • Pratschke S, Angele MK, Grützner U, Tufman A, Bilzer M, Loehe F, Jauch KW, Schauer RJ. GSH attenuates organ injury and improves function after transplantation of fatty livers. Eur Surg Res. 2010; 45: 13–9.
  • Ye S, Dong J, Han B. Protective effect of reduced glutathione and venous systemic oxygen persufflation on rat steatotic graft following liver transplantation. J Surg Res. 2010; 158: 138–46.
  • Rusakov VV, Dolgikh VT. [Reperfusion injury of myocardial biomembranes after acute fatal hemorrhage and their correction with carnosine]. [Article in Russian]. Biokhimiia. 1992; 57: 1393–7.
  • Alabovsky VV, Boldyrev AA, Vinokurov AA, Shchavratsky VKh. Effect of histidine-containing dipeptides on isolated heart under ischemia/reperfusion. Biochemistry (Mosc). 1997; 62: 77–87.
  • Fujii T, Takaoka M, Muraoka T, Kurata H, Tsuruoka N, Ono H, Kiso Y, Tanaka T, Matsumura Y. Preventive effect of L-carnosine on ischemia/reperfusion-induced acute renal failure in rats. Eur J Pharmacol. 2003; 474: 261–7.
  • Dobrota D, Fedorova T, Stvolinsky S, Babusikova E, Likavcanova K, Drgova A, Strapkova A, Boldyrev A. Carnosine protects the brain of rats and Mongolian gerbils against ischemic injury: after-stroke-effect. Neurochem Res. 2005; 30: 1283–8.
  • Fujii T, Takaoka M, Tsuruoka N, Kiso Y, Tanaka T, Matsumura Y. Dietary supplementation of L-carnosine prevents ischemia/reperfusion-induced renal injury in rats. Biol Pharm Bull. 2005; 28: 361–3.
  • Kurata H, Fujii T, Tsutsui H, Katayama T, Ohkita M, Takaoka M, Tsuruoka N, Kiso Y, Ohno Y, Fujisawa Y, Shokoji T, Nishiyama A, Abe Y, Matsumura Y. Renoprotective effects of L-carnosine on ischemia/reperfusion-induced renal injury in rats. J Pharmacol Exp Ther. 2006; 319: 640–7.
  • Fouad AA, El-Rehany MA, Maghraby HK. The hepatoprotective effect of carnosine against ischemia/reperfusion liver injury in rats. Eur J Pharmacol. 2007; 572: 61–8.
  • Rajanikant GK, Zemke D, Senut MC, Frenkel MB, Chen AF, Gupta R, Majid A. Carnosine is neuroprotective against permanent focal cerebral ischemia in mice. Stroke. 2007; 38: 3023–31.
  • Baykara B, Tekmen I, Pekcetin C, Ulukus C, Tuncel P, Sagol O, Ormen M, Ozogul C. The protective effects of carnosine and melatonin in ischemia-reperfusion injury in the rat liver. Acta Histochem. 2009; 111: 42–51.
  • Pekcetin C, Kiray M, Ergur BU, Tugyan K, Bagriyanik HA, Erbil G, Baykara B, Camsari UM. Carnosine attenuates oxidative stress and apoptosis in transient cerebral ischemia in rats. Acta Biol Hung. 2009; 60: 137–48.
  • Sewerynek E, Reiter RJ, Melchiorri D, Ortiz GG, Lewinski A. Oxidative damage in the liver induced by ischemia-reperfusion: protection by melatonin. Hepatogastroenterology. 1996; 43: 898–905.
  • Cho S, Joh TH, Baik HH, Dibinis C, Volpe BT.1997; 755: 335–8.
  • De La Lastra CA, Cabeza J, Motilva V, Martin MJ. Melatonin protects against gastric ischemia-reperfusion injury in rats. J Pineal Res. 1997; 23: 47–52.
  • Guerrero JM, Reiter RJ, Ortiz GG, Pablos MI, Sewerynek E, Chuang JI. Melatonin prevents increases in neural nitric oxide and cyclic GMP production after transient brain ischemia and reperfusion in the Mongolian gerbil (Meriones unguiculatus). J Pineal Res. 1997; 23: 24–31.
  • Konturek PC, Konturek SJ, Majka J, Zembala M, Hahn EG. Melatonin affords protection against gastric lesions induced by ischemia-reperfusion possibly due to its antioxidant and mucosal microcirculatory effects. Eur J Pharmacol. 1997; 322: 73–7.
  • Li XJ, Zhang LM, Gu J, Zhang AZ, Sun FY. Melatonin decreases production of hydroxyl radical during cerebral ischemia-reperfusion. Zhongguo Yao Li Xue Bao. 1997; 18: 394–6.
  • Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ, El-Sokkary GH. Ischemia/reperfusion-induced arrhythmias in the isolated rat heart: prevention by melatonin. J Pineal Res. 1998; 25: 184–91.
  • Kilic E, Ozdemir YG, Bolay H, Kele⋅timur H, Dalkara T. Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J Cereb Blood Flow Metab. 1999; 19: 511–6.
  • Ling X, Zhang LM, Lu SD, Li XJ, Sun FY. Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression. Zhongguo Yao Li Xue Bao. 1999; 20: 409–14.
  • Wakatsuki A, Okatani Y, Izumiya C, Ikenoue N. Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain. J Pineal Res. 1999; 26: 147–52.
  • Borlongan CV, Yamamoto M, Takei N, Kumazaki M, Ungsuparkorn C, Hida H, Sanberg PR, Nishino H. Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia. FASEB J. 2000; 14: 1307–17.
  • Cuzzocrea S, Costantino G, Gitto E, Mazzon E, Fulia F, Serraino I, Cordaro S, Barberi I, De Sarro A, Caputi AP. Protective effects of melatonin in ischemic brain injury. J Pineal Res. 2000; 29: 217–27.
  • Cuzzocrea S, Costantino G, Mazzon E, Micali A, De Sarro A, Caputi AP. Beneficial effects of melatonin in a rat model of splanchnic artery occlusion and reperfusion. J Pineal Res. 2000; 28: 52–63.
  • Kaneko S, Okumura K, Numaguchi Y, Matsui H, Murase K, Mokuno S, Morishima I, Hira K, Toki Y, Ito T, Hayakawa T. Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury. Life Sci. 2000; 67: 101–12.
  • Kazez A, Demirbağ M, Ustündağ B, Ozercan IH, Sağlam M. The role of melatonin in prevention of intestinal ischemia-reperfusion injury in rats. J Pediatr Surg. 2000; 35: 1444–8.
  • Lagneux C, Joyeux M, Demenge P, Ribuot C, Godin-Ribuot D. Protective effects of melatonin against ischemia-reperfusion injury in the isolated rat heart. Life Sci. 2000; 66: 503–9.
  • Cabeza J, Motilva V, Martín MJ, de la Lastra CA. Mechanisms involved in gastric protection of melatonin against oxidant stress by ischemia-reperfusion in rats. Life Sci. 2001; 68: 1405–15.
  • Okatani Y, Wakatsuki A, Shinohara K, Taniguchi K, Fukaya T. Melatonin protects against oxidative mitochondrial damage induced in rat placenta by ischemia and reperfusion. J Pineal Res. 2001; 31: 173–8.
  • Rodríguez-Reynoso S, Leal C, Portilla E, Olivares N, Muñiz J. Effect of exogenous melatonin on hepatic energetic status during ischemia/reperfusion: possible role of tumor necrosis factor-alpha and nitric oxide. J Surg Res. 2001; 100: 141–9.
  • Szárszoi O, Asemu G, Vanecek J, Ost’ádal B, Kolár F. Effects of melatonin on ischemia and reperfusion injury of the rat heart. Cardiovasc Drugs Ther. 2001; 15: 251–7.
  • Sinha K, Degaonkar MN, Jagannathan NR, Gupta YK. Effect of melatonin on ischemia reperfusion injury induced by middle cerebral artery occlusion in rats. Eur J Pharmacol. 2001; 428: 185–92.
  • Wakatsuki A, Okatani Y, Shinohara K, Ikenoue N, Fukaya T. Melatonin protects against ischemia/reperfusion-induced oxidative damage to mitochondria in fetal rat brain. J Pineal Res. 2001; 31: 167–72.
  • Celebi S, Dilsiz N, Yilmaz T, Kükner AS. Effects of melatonin, vitamin E and octreotide on lipid peroxidation during ischemia-reperfusion in the guinea pig retina. Eur J Ophthalmol. 2002; 12: 77–83.
  • El-Abhar HS, Shaalan M, Barakat M, El-Denshary ES. Effect of melatonin and nifedipine on some antioxidant enzymes and different energy fuels in the blood and brain of global ischemic rats. J Pineal Res. 2002; 33: 87–94.
  • Gupta YK, Chaudhary G, Sinha K. Enhanced protection by melatonin and meloxicam combination in a middle cerebral artery occlusion model of acute ischemic stroke in rat. Can J Physiol Pharmacol. 2002; 80: 210–7.
  • Kondoh T, Uneyama H, Nishino H, Torii K. Melatonin reduces cerebral edema formation caused by transient forebrain ischemia in rats. Life Sci. 2002; 72: 583–90.
  • Lee YM, Chen HR, Hsiao G, Sheu JR, Wang JJ, Yen MH. Protective effects of melatonin on myocardial ischemia/reperfusion injury in vivo. J Pineal Res. 2002; 33: 72–80.
  • Pei Z, Ho HT, Cheung RT. Pre-treatment with melatonin reduces volume of cerebral infarction in a permanent middle cerebral artery occlusion stroke model in the rat. Neurosci Lett. 2002; 318: 141–4.
  • Pei Z, Pang SF, Cheung RT. Pretreatment with melatonin reduces volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. J Pineal Res. 2002; 32: 168–72.
  • Reiter RJ, Tan DX, Sainz RM, Mayo JC. Melatonin protects the heart against both ischemia/reperfusion injury and chemotherapeutic drugs. Cardiovasc Drugs Ther. 2002; 16: 5–6.
  • Sahna E, Acet A, Ozer MK, Olmez E. Myocardial ischemia-reperfusion in rats: reduction of infarct size by either supplemental physiological or pharmacological doses of melatonin. J Pineal Res. 2002; 33: 234–8.
  • Sahna E, Olmez E, Acet A. Effects of physiological and pharmacological concentrations of melatonin on ischemia-reperfusion arrhythmias in rats: can the incidence of sudden cardiac death be reduced?. J Pineal Res. 2002; 32: 194–8.
  • Sener G, Paskaloğlu K, Sehirli AO, Dülger GA, Alican I. The effects of melatonin on ischemia-reperfusion induced changes in rat corpus cavernosum. J Urol. 2002; 167: 2624–7.
  • Sener G, Sehirli AO, Keyer-Uysal M, Arbak S, Ersoy Y, Yeğen BC. The protective effect of melatonin on renal ischemia-reperfusion injury in the rat. J Pineal Res. 2002; 32: 120–6.
  • Sun FY, Lin X, Mao LZ, Ge WH, Zhang LM, Huang YL, Gu J. Neuroprotection by melatonin against ischemic neuronal injury associated with modulation of DNA damage and repair in the rat following a transient cerebral ischemia. J Pineal Res. 2002; 33: 48–56.
  • Zhang J, Guo JD, Xing SH, Gu SL, Dai TJ. [The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils]. [Article in Chinese]. Yao Xue Xue Bao. 2002; 37: 329–33.
  • Cheung RT. The utility of melatonin in reducing cerebral damage resulting from ischemia and reperfusion. J Pineal Res. 2003; 34: 153–60.
  • Dobsak P, Siegelova J, Eicher JC, Jancik J, Svacinova H, Vasku J, Kuchtickova S, Horky M, Wolf JE.2003; 9: 179–187.
  • Erten SF, Kocak A, Ozdemir I, Aydemir S, Colak A, Reeder BS. Protective effect of melatonin on experimental spinal cord ischemia. Spinal Cord. 2003; 41: 533–8.
  • Kunduzova OR, Escourrou G, Seguelas MH, Delagrange P, De La Farge F, Cambon C, Parini A. Prevention of apoptotic and necrotic cell death, caspase-3 activation, and renal dysfunction by melatonin after ischemia/reperfusion. FASEB J. 2003; 17: 872–4.
  • Okatani Y, Wakatsuki A, Reiter RJ, Enzan H, Miyahara Y. Protective effect of melatonin against mitochondrial injury induced by ischemia and reperfusion of rat liver. Eur J Pharmacol. 2003; 469: 145–52.
  • Ozturk A, Baltaci AK, Mogulkoc R, Ozturk B. The effect of prophylactic melatonin administration on reperfusion damage in experimental testis ischemia-reperfusion. Neuro Endocrinol Lett. 2003; 24: 170–2.
  • Pei Z, Cheung RT. Melatonin protects SHSY5Y neuronal cells but not cultured astrocytes from ischemia due to oxygen and glucose deprivation. J Pineal Res. 2003; 34: 194–201.
  • Pei Z, Fung PC, Cheung RT. Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model. J Pineal Res. 2003; 34: 110–8.
  • Pei Z, Pang SF, Cheung RT. Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke. 2003; 34: 770–5.
  • Reiter RJ, Sainz RM, Lopez-Burillo S, Mayo JC, Manchester LC, Tan DX. Melatonin ameliorates neurologic damage and neurophysiologic deficits in experimental models of stroke. Ann N Y Acad Sci. 2003;993:35–47; discussion48–53.
  • Reiter RJ, Tan DX. Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res. 2003; 58: 10–9.
  • Sahna E, Parlakpinar H, Ozturk F, Cigremis Y, Acet A. The protective effects of physiological and pharmacological concentrations of melatonin on renal ischemia-reperfusion injury in rats. Urol Res. 2003; 31: 188–93.
  • Sener G, Sehirli AO, Paskaloğlu K, Dülger GA, Alican I. Melatonin treatment protects against ischemia/reperfusion-induced functional and biochemical changes in rat urinary bladder. J Pineal Res. 2003; 34: 226–30.
  • Sener G, Tosun O, Sehirli AO, Kaçmaz A, Arbak S, Ersoy Y, Ayanoğlu-Dülger G. Melatonin and N-acetylcysteine have beneficial effects during hepatic ischemia and reperfusion. Life Sci. 2003; 72: 2707–18.
  • Abasiyanik A, Dağdönderen L. Beneficial effects of melatonin compared with allopurinol in experimental testicular torsion. J Pediatr Surg. 2004; 39: 1238–41.
  • Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J. 2004; 18: 869–71.
  • Gupta S, Kaul CL, Sharma SS. Neuroprotective effect of combination of poly (ADP-ribose) polymerase inhibitor and antioxidant in middle cerebral artery occlusion induced focal ischemia in rats. Neurol Res. 2004; 26: 103–7.
  • Kilic E, Kilic U, Reiter RJ, Bassetti CL, Hermann DM. Prophylactic use of melatonin protects against focal cerebral ischemia in mice: role of endothelin converting enzyme-1. J Pineal Res. 2004; 37: 247–51.
  • Kilic E, Kilic U, Yulug B, Hermann DM, Reiter RJ. Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. J Pineal Res. 2004; 36: 171–6.
  • Lee EJ, Wu TS, Lee MY, Chen TY, Tsai YY, Chuang JI, Chang GL. Delayed treatment with melatonin enhances electrophysiological recovery following transient focal cerebral ischemia in rats. J Pineal Res. 2004; 36: 33–42.
  • Pei Z, Cheung RT. Pretreatment with melatonin exerts anti-inflammatory effects against ischemia/reperfusion injury in a rat middle cerebral artery occlusion stroke model. J Pineal Res. 2004; 37: 85–91.
  • Rodríguez-Reynoso S, Leal C, Portilla-de Buen E, Castillo JC, Ramos-Solano F. Melatonin ameliorates renal ischemia/reperfusion injury. J Surg Res. 2004; 116: 242–7.
  • Torii K, Uneyama H, Nishino H, Kondoh T. Melatonin suppresses cerebral edema caused by middle cerebral artery occlusion/reperfusion in rats assessed by magnetic resonance imaging. J Pineal Res. 2004; 36: 18–24.
  • Turkoz Y, Celik O, Hascalik S, Cigremis Y, Hascalik M, Mizrak B, Yologlu S. Melatonin reduces torsion-detorsion injury in rat ovary: biochemical and histopathologic evaluation. J Pineal Res. 2004; 37: 137–41.
  • Watanabe K, Wakatsuki A, Shinohara K, Ikenoue N, Yokota K, Fukaya T. Maternally administered melatonin protects against ischemia and reperfusion-induced oxidative mitochondrial damage in premature fetal rat brain. J Pineal Res. 2004; 37: 276–80.
  • Arslan SO, Gelir E, Sayan H, Ozacmak VH. L-Arginine and melatonin interaction in rat intestinal ischemia-reperfusion. Fundam Clin Pharmacol. 2005; 19: 533–5.
  • Erkanli K, Kayalar N, Erkanli G, Ercan F, Sener G, Kirali K. Melatonin protects against ischemia/reperfusion injury in skeletal muscle. J Pineal Res. 2005; 39: 238–42.
  • Eşrefoğlu M, Gül M, Parlakpinar H, Acet A. Effects of melatonin and caffeic acid phenethyl ester on testicular injury induced by myocardial ischemia/reperfusion in rats. Fundam Clin Pharmacol. 2005; 19: 365–72.
  • Kaçmaz A, User EY, Sehirli AO, Tilki M, Ozkan S, Sener G. Protective effect of melatonin against ischemia/reperfusion-induced oxidative remote organ injury in the rat. Surg Today. 2005; 35: 744–50.
  • Kilic E, Kilic U, Reiter RJ, Bassetti CL, Hermann DM. Tissue-plasminogen activator-induced ischemic brain injury is reversed by melatonin: role of iNOS and Akt. J Pineal Res. 2005; 39: 151–5.
  • Kilic U, Kilic E, Reiter RJ, Bassetti CL, Hermann DM. Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice. J Pineal Res. 2005; 38: 67–71.
  • Lee EJ, Lee MY, Chen HY, Hsu YS, Wu TS, Chen ST, Chang GL. Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. J Pineal Res. 2005; 38: 42–52.
  • Ozacmak VH, Sayan H, Arslan SO, Altaner S, Aktas RG.2005; 76: 1575–88.
  • Reiter RJ, Tan DX, Leon J, Kilic U, Kilic E. When melatonin gets on your nerves: its beneficial actions in experimental models of stroke. Exp Biol Med (Maywood). 2005; 230: 104–17.
  • Sahna E, Parlakpinar H, Turkoz Y, Acet A. Protective effects of melatonin on myocardial ischemia/reperfusion induced infarct size and oxidative changes. Physiol Res. 2005; 54: 491–5.
  • Tütüncüler F, Eskiocak S, Başaran UN, Ekuklu G, Ayvaz S, Vatansever U. The protective role of melatonin in experimental hypoxic brain damage. Pediatr Int. 2005; 47: 434–9.
  • Vazan R, Pancza D, Béder I, Styk J. Ischemia-reperfusion injury-antiarrhythmic effect of melatonin associated with reduced recovering of contractility. Gen Physiol Biophys. 2005; 24: 355–9.
  • Chen HY, Chen TY, Lee MY, Chen ST, Hsu YS, Kuo YL, Chang GL, Wu TS, Lee EJ. Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res. 2006; 41: 175–82.
  • Chen TY, Lee MY, Chen HY, Kuo YL, Lin SC, Wu TS, Lee EJ. Melatonin attenuates the postischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice. J Pineal Res. 2006; 40: 242–50.
  • Duan Q, Wang Z, Lu T, Chen J, Wang X. Comparison of 6-hydroxylmelatonin or melatonin in protecting neurons against ischemia/reperfusion-mediated injury. J Pineal Res. 2006; 41: 351–7.
  • Gurlek A, Celik M, Parlakpinar H, Aydogan H, Bay-Karabulut A. The protective effect of melatonin on ischemia-reperfusion injury in the groin (inferior epigastric) flap model in rats. J Pineal Res. 2006; 40: 312–7.
  • Han YX, Zhang SH, Wang XM, Wu JB. Inhibition of mitochondria responsible for the anti-apoptotic effects of melatonin during ischemia-reperfusion. J Zhejiang Univ Sci B. 2006; 7: 142–7.
  • Lochner A, Genade S, Davids A, Ytrehus K, Moolman JA. Short- and long-term effects of melatonin on myocardial post-ischemic recovery. J Pineal Res. 2006; 40: 56–63.
  • Muñoz-Casares FC, Padillo FJ, Briceño J, Collado JA, Muñoz-Castañeda JR, Ortega R, Cruz A, Túnez I, Montilla P, Pera C, Muntané J. Melatonin reduces apoptosis and necrosis induced by ischemia/reperfusion injury of the pancreas. J Pineal Res. 2006; 40: 195–203.
  • Petrosillo G, Di Venosa N, Pistolese M, Casanova G, Tiravanti E, Colantuono G, Federici A, Paradies G, Ruggiero FM. Protective effect of melatonin against mitochondrial dysfunction associated with cardiac ischemia- reperfusion: role of cardiolipin. FASEB J. 2006; 20: 269–76.
  • Sahach VF, Rudyk OV, Vavilova HL, Kotsiuruba AV, Tkachenko IuP. [Melatonin recovers ischemic tolerance and decreases the sensitivity of mitochondrial permeability transition pore opening in the heart of aging rats]. [Article in Ukrainian]. Fiziol Zh. 2006;52: 3–14.
  • Sener G, Sert G, Ozer Sehirli A, Arbak S, Gedik N, Ayanoğlu-Dülger G. Melatonin protects against pressure ulcer-induced oxidative injury of the skin and remote organs in rats. J Pineal Res. 2006; 40: 280–7.
  • Zhang WH, Li JY, Zhou Y. Melatonin abates liver ischemia/reperfusion injury by improving the balance between nitric oxide and endothelin. Hepatobiliary Pancreat Dis Int. 2006; 5: 574–9.
  • Zou LY, Cheung RT, Liu S, Li G, Huang L. Melatonin reduces infarction volume in a photothrombotic stroke model in the wild-type but not cyclooxygenase-1-gene knockout mice. J Pineal Res. 2006; 41: 150–6.
  • Aktoz T, Aydogdu N, Alagol B, Yalcin O, Huseyinova G, Atakan IH. The protective effects of melatonin and vitamin E against renal ischemia-reperfusion injury in rats. Ren Fail. 2007; 29: 535–42.
  • Colak C, Parlakpinar H, Ozer MK, Sahna E, Cigremis Y, Acet A. Investigating the protective effect of melatonin on liver injury related to myocardial ischemia-reperfusion. Med Sci Monit. 2007; 13: BR251–254.
  • Kurcer Z, Oguz E, Ozbilge H, Baba F, Aksoy N, Celik H, Cakir H, Gezen MR. Melatonin protects from ischemia/reperfusion-induced renal injury in rats: this effect is not mediated by proinflammatory cytokines. J Pineal Res. 2007; 43: 172–8.
  • Lee MY, Kuan YH, Chen HY, Chen TY, Chen ST, Huang CC, Yang IP, Hsu YS, Wu TS, Lee EJ. Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J Pineal Res. 2007; 42: 297–309.
  • Park SW, Choi SM, Lee SM. Effect of melatonin on altered expression of vasoregulatory genes during hepatic ischemia/reperfusion. Arch Pharm Res. 2007; 30: 1619–24.
  • Reiter RJ, Tan DX, Manchester LC, Tamura H. Melatonin defeats neurally-derived free radicals and reduces the associated neuromorphological and neurobehavioral damage. J Physiol Pharmacol. 2007; 58(Suppl 6): 5–22.
  • Sahna E, Türk G, Atessahin A, Yilmaz S, Olmez E. Remote organ injury induced by myocardial ischemia and reperfusion on reproductive organs, and protective effect of melatonin in male rats. Fertil Steril. 2007; 88: 188–92.
  • Welin AK, Svedin P, Lapatto R, Sultan B, Hagberg H, Gressens P, Kjellmer I, Mallard C. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res. 2007; 61: 153–8.
  • Cervantes M, Moralí G, Letechipía-Vallejo G. Melatonin and ischemia-reperfusion injury of the brain. J Pineal Res. 2008; 45: 1–7.
  • Ceyran H, Narin F, Narin N, Akgun H, Ceyran AB, Ozturk F, Akcali Y. The effect of high dose melatonin on cardiac ischemia- reperfusion Injury. Yonsei Med J. 2008; 49: 735–41.
  • Fadillioglu E, Kurcer Z, Parlakpinar H, Iraz M, Gursul C. Melatonin treatment against remote organ injury induced by renal ischemia reperfusion injury in diabetes mellitus. Arch Pharm Res. 2008; 31: 705–12.
  • Genade S, Genis A, Ytrehus K, Huisamen B, Lochner A. Melatonin receptor-mediated protection against myocardial ischaemia/reperfusion injury: role of its anti-adrenergic actions. J Pineal Res. 2008; 45: 449–58.
  • Hung YC, Chen TY, Lee EJ, Chen WL, Huang SY, Lee WT, Lee MY, Chen HY, Wu TS. Melatonin decreases matrix metalloproteinase-9 activation and expression and attenuates reperfusion-induced hemorrhage following transient focal cerebral ischemia in rats. J Pineal Res. 2008; 45: 459–67.
  • Jiang CL, Yang BX, Zhao D, Jia R. [Total hepatic ischemia-reperfusion-induced lung injury in rats and protective effects of melatonin]. [Article in Chinese]. Beijing Da Xue Xue Bao. 2008; 40: 285–91.
  • Kim SH, Lee SM. Cytoprotective effects of melatonin against necrosis and apoptosis induced by ischemia/reperfusion injury in rat liver. J Pineal Res. 2008; 44: 165–71.
  • Koh PO. Melatonin regulates nitric oxide synthase expression in ischemic brain injury. J Vet Med Sci. 2008; 70: 747–50.
  • Korkmaz A, Oyar EO, Kardeş O, Omeroğlu S.2008; 5: 46–51.
  • Kurcer Z, Oguz E, Ozbilge H, Baba F, Aksoy N, Celik N. Effect of melatonin on testicular ischemia/reperfusion injury in rats: is this effect related to the proinflammatory cytokines?. Fertil Steril. 2008; 89((5 Suppl)): 1468–73.
  • Li JY, Yin HZ, Gu X, Zhou Y, Zhang WH, Qin YM. Melatonin protects liver from intestine ischemia reperfusion injury in rats. World J Gastroenterol. 2008; 14: 7392–6.
  • Li ZR, Shen MH, Niu WM. [Involvement of melatonin in the adjusting effect of electroacupuncture in resisting oxygen stress in cerebral ischemia-reperfusion injury rats]. [Article in Chinese]. Zhen Ci Yan Jiu. 2008; 33: 164–8.
  • Nagai R, Watanabe K, Wakatsuki A, Hamada F, Shinohara K, Hayashi Y, Imamura R, Fukaya T. Melatonin preserves fetal growth in rats by protecting against ischemia/reperfusion-induced oxidative/nitrosative mitochondrial damage in the placenta. J Pineal Res. 2008; 45: 271–6.
  • Sahna E, Deniz E, Bay-Karabulut A, Burma O. Melatonin protects myocardium from ischemia-reperfusion injury in hypertensive rats: role of myeloperoxidase activity. Clin Exp Hypertens. 2008; 30: 673–81.
  • Yeung HM, Hung MW, Fung ML. Melatonin ameliorates calcium homeostasis in myocardial and ischemia-reperfusion injury in chronically hypoxic rats. J Pineal Res. 2008; 45: 373–82.
  • Yurtçu M, Abasiyanik A, Avunduk MC, Muhtaroğlu S. Effects of melatonin on spermatogenesis and testicular ischemia-reperfusion injury after unilateral testicular torsion-detorsion. J Pediatr Surg. 2008; 43: 1873–8.
  • Chen HY, Hung YC, Chen TY, Huang SY, Wang YH, Lee WT, Wu TS, Lee EJ. Melatonin improves presynaptic protein, SNAP-25, expression and dendritic spine density and enhances functional and electrophysiological recovery following transient focal cerebral ischemia in rats. J Pineal Res. 2009; 47: 260–70.
  • Chen Z, Chua CC, Gao J, Chua KW, Ho YS, Hamdy RC, Chua BH. Prevention of ischemia/reperfusion-induced cardiac apoptosis and injury by melatonin is independent of glutathione peroxidase 1. J Pineal Res. 2009; 46: 235–41.
  • Diez ER, Prados LV, Carrión A, Ponce ZA, Miatello RM. A novel electrophysiologic effect of melatonin on ischemia/reperfusion-induced arrhythmias in isolated rat hearts. J Pineal Res. 2009; 46: 155–60.
  • Dominguez-Rodriguez A, Abreu-Gonzalez P, Reiter RJ. Clinical aspects of melatonin in the acute coronary syndrome. Curr Vasc Pharmacol. 2009; 7: 367–73.
  • Kesik V, Guven A, Vurucu S, Tunc T, Uysal B, Gundogdu G, Oztas E, Korkmaz A. Melatonin and 1400 W ameliorate both intestinal and remote organ injury following mesenteric ischemia/reperfusion. J Surg Res. 2009; 157: e97–e105.
  • Li Z, Nickkholgh A, Yi X, Bruns H, Gross ML, Hoffmann K, Mohr E, Zorn M, Büchler MW, Schemmer P. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation. J Pineal Res. 2009; 46: 365–72.
  • Liang R, Nickkholgh A, Hoffmann K, Kern M, Schneider H, Sobirey M, Zorn M, Büchler MW, Schemmer P. Melatonin protects from hepatic reperfusion injury through inhibition of IKK and JNK pathways and modification of cell proliferation. J Pineal Res. 2009; 46: 8–14.
  • Ozbek E, Ilbey YO, Ozbek M, Simsek A, Cekmen M, Somay A. Melatonin attenuates unilateral ureteral obstruction-induced renal injury by reducing oxidative stress, iNOS, MAPK, and NF-kB expression. J Endourol. 2009; 23: 1165–73.
  • Ozacmak VH, Barut F, Ozacmak HS. Melatonin provides neuroprotection by reducing oxidative stress and HSP70 expression during chronic cerebral hypoperfusion in ovariectomized rats. J Pineal Res. 2009; 47: 156–63.
  • Petrosillo G, Colantuono G, Moro N, Ruggiero FM, Tiravanti E, Di Venosa N, Fiore T, Paradies G. Melatonin protects against heart ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Am J Physiol Heart Circ Physiol. 2009; 297: H1487–93.
  • Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, Day AL, Kristal BS, Friedlander RM. Methazolamide and melatonin inhibit mitochondrial cytochrome c release and are neuroprotective in experimental models of ischemic injury. Stroke. 2009; 40: 1877–85.
  • Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol. 2010; 8: 228–42.
  • Dominguez-Rodriguez A, Abreu-Gonzalez P. Myocardial ischemia-reperfusion injury: Possible role of melatonin. World J Cardiol. 2010; 2: 233–6.
  • Hamada F, Watanabe K, Wakatsuki A, Nagai R, Shinohara K, Hayashi Y, Imamura R, Fukaya T. Therapeutic effects of maternal melatonin administration on ischemia/reperfusion-induced oxidative cerebral damage in neonatal rats. Neonatology. 2010; 98: 33–40.
  • Park OK, Yoo KY, Lee CH, Choi JH, Hwang IK, Park JH, Kwon YG, Kim YM, Won MH. Arylalkylamine N-acetyltransferase (AANAT) is expressed in astrocytes and melatonin treatment maintains AANAT in the gerbil hippocampus induced by transient cerebral ischemia. J Neurol Sci. 2010; 294: 7–17.
  • Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L. Beneficial effects of melatonin in cardiovascular disease. Ann Med. 2010; 42: 276–85.
  • Tai SH, Chen HY, Lee EJ, Chen TY, Lin HW, Hung YC, Huang SY, Chen YH, Lee WT, Wu TS. Melatonin inhibits postischemic matrix metalloproteinase-9 (MMP-9) activation via dual modulation of plasminogen/plasmin system and endogenous MMP inhibitor in mice subjected to transient focal cerebral ischemia. J Pineal Res. 2010; 49: 332–41.
  • Du To itEF F, Blackhurst D, Marais D, Lochner A. Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res. 2011; 50: 171–82.
  • Brune D, Hellborg R, Persson BRR, Pääkkönen R. Radiation at Home, Outdoors and in the Workplace. Scandinavian Science Publishers. Oslo 2001.
  • Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J. 1988; 256: 251–5.
  • Mehta TR, Dawson R Jr. Taurine is a weak scavenger of peroxynitrite and does not attenuate sodium nitroprusside toxicity to cells in culture. Amino Acids. 2001; 20: 419–33.
  • Oliveira MW, Minotto JB, de Oliveira MR, Zanotto-Filho A, Behr GA, Rocha RF, Moreira JC, Klamt F. Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep. 2010; 62: 185–93.
  • Pryor WA. The role of free radical reactions in biological systems. In: Pryor WA. Free Radicals in Biology. Vol 1. Academic Press., New York, 1976, pp. 1–43.
  • Aust SD, Morehouse LA, Thomas CE. Role of metals in oxygen radical reactions. J Free Radic Biol Med. 1985; 1: 3–25.
  • Halliwell B, Gutteridge JM, Blake D. Metal ions and oxygen radical reactions in human inflammatory joint disease. Philos Trans R Soc Lond B Biol Sci. 1985; 311: 659–71.
  • Biemond P, Swaak AJ, Beindorff CM, Koster JF. Superoxide-dependent and –independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Implications for oxygen-free-radical-induced tissue destruction during ischaemia and inflammation. Biochem J. 1986; 239: 169–73.
  • Biemond P, Swaak AJ, van Eijk HG, Koster JF. Intraarticular ferritin-bound iron in rheumatoid arthritis. A factor that increases oxygen free radical-induced tissue destruction. Arthritis Rheum. 1986; 29: 1187–93.
  • Biemond P, Swaak AJ, van Eijk HG, Koster JF. Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radic Biol Med. 1988; 4: 185–98.
  • Patt A, Horesh IR, Berger EM, Harken AH, Repine JE. Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains. J Pediatr Surg. 1990;25:224–7; discussion227–8.
  • Garner B, Roberg K, Brunk UT. Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress. Free Radic Res. 1998; 29: 103–14.
  • Persson HL, Yu Z, Tirosh O, Eaton JW, Brunk UT. Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radic Biol Med. 2003; 34: 1295–305.
  • Yu Z, Eaton JW, Persson HL. The radioprotective agent, amifostine, suppresses the reactivity of intralysosomal iron. Redox Rep. 2003; 8: 347–55.
  • Yu Z, Persson HL, Eaton JW, Brunk UT. Intralysosomal iron: a major determinant of oxidant-induced cell death. Free Radic Biol Med. 2003; 34: 1243–52.
  • Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005; 12: 1161–208.
  • Kurz T, Gustafsson B, Brunk UT. Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. FEBS J. 2006; 273: 3106–17.
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006; 160: 1–40.
  • Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011 Mar 14. [Epub ahead of print].
  • Claycamp HG, Luo D. Plutonium-catalyzed oxidative DNA damage in the absence of significant alpha-particle decay. Radiat Res. 1994; 137: 114–7.
  • Rodriguez H, Holmquist GP, D'Agostino R Jr, Keller J, Akman SA. Metal ion-dependent hydrogen peroxide-induced DNA damage is more sequence specific than metal specific. Cancer Res. 1997;57: 2394–403.
  • Kasprzak KS. Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis. Free Radic Biol Med. 2002; 32: 958–67.
  • Kawanishi S, Hiraku Y, Murata M, Oikawa S. The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic Biol Med. 2002; 32: 822–32.
  • Lee DH, O'Connor TR, Pfeifer GP. Oxidative DNA damage induced by copper and hydrogen peroxide promotes CG- > TT tandem mutations at methylated CpG dinucleotides in nucleotide excision repair-deficient cells. Nucleic Acids Res. 2002; 30: 3566–73.
  • Miller AC, Stewart M, Brooks K, Shi L, Page N. Depleted uranium-catalyzed oxidative DNA damage: absence of significant alpha particle decay. J Inorg Biochem. 2002; 91: 246–52.
  • Kurz T, Leake A, Von Zglinicki T, Brunk UT. Relocalized redox-active lysosomal iron is an important mediator of oxidative-stress-induced DNA damage. Biochem J. 2004; 378: 1039–45.
  • Melidou M, Riganakos K, Galaris D. Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: the role of iron chelation. Free Radic Biol Med. 2005; 39: 1591–600.
  • Battin EE, Perron NR, Brumaghim JL. The central role of metal coordination in selenium antioxidant activity. Inorg Chem. 2006; 45: 499–50.
  • Hong H, Cao H, Wang Y, Wang Y. Identification and quantification of a guanine-thymine intrastrand cross-link lesion induced by Cu(II)/H2O2/ascorbate. Chem Res Toxicol. 2006; 19: 614–21.
  • Cao H, Wang Y. Quantification of oxidative single-base and intrastrand cross-link lesions in unmethylated and CpG-methylated DNA induced by Fenton-type reagents. Nucleic Acids Res. 2007; 35: 4833–44.
  • Battin EE, Brumaghim JL. Metal specificity in DNA damage prevention by sulfur antioxidants. J Inorg Biochem. 2008; 102: 2036–42.
  • Cai C, Ching A, Lagace C, Linsenmayer T. Nuclear ferritin-mediated protection of corneal epithelial cells from oxidative damage to DNA. Dev Dyn. 2008; 237: 2676–83.
  • Perron NR, Hodges JN, Jenkins M, Brumaghim JL. Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorg Chem. 2008; 47: 6153–61.
  • Liu Y, Hu N. Electrochemical detection of natural DNA damage induced by ferritin/ascorbic acid/H2O2 system and amplification of DNA damage by endonuclease Fpg. Biosens Bioelectron. 2009; 25: 185–90.
  • Battin EE, Zimmerman MT, Ramoutar RR, Quarles CE, Brumaghim JL. Preventing metal-mediated oxidative DNA damage with selenium compounds. Metallomics. 2011. Feb 2. [Epub ahead of print].
  • Ayene IS, Koch CJ, Krisch RE. DNA strand breakage by bivalent metal ions and ionizing radiation. Int J Radiat Biol. 2007; 83: 195–210.
  • Berndt C, Kurz T, Selenius M, Fernandes AP, Edgren MR, Brunk UT. Chelation of lysosomal iron protects against ionizing radiation. Biochem J. 2010; 432: 295–301.
  • Svingen BA, Buege JA, O'Neal FO, Aust SD. The mechanism of NADPH-dependent lipid peroxidation. The propagation of lipid peroxidation. J Biol Chem. 1979; 254: 5892–9.
  • Aust SD, Svingen BA. The role of iron in enzymatic lipid peroxidation. In: Pryor WA. Free Radicals in Biology. Vol V. Academic Press., New York, 1982, pp. 1–28.
  • Sugioka K, Nakano M. Mechanism of phospholipid peroxidation induced by ferric ion-ADP-adriamycin-co-ordination complex. Biochim Biophys Acta. 1982; 713: 333–43.
  • Sugioka K, Nakano H, Nakano M, Tero-Kubota S, Ikegami Y. Generation of hydroxyl radicals during the enzymatic reductions of the Fe3 + -ADP-phosphate-adriamycin and Fe3 + -ADP-EDTA systems. Less involvement of hydroxyl radical and a great importance of proposed perferryl ion complexes in lipid peroxidation. Biochim Biophys Acta. 1983; 753: 411–21.
  • Nakano H, Sugioka K, Nakano M, Mizukami M, Kimura H, Tero-Kubota S, Ikegami Y. Importance of Fe2 + -ADP and the relative unimportance of OH in the mechanism of mitomycin C-induced lipid peroxidation. Biochim Biophys Acta. 1984; 796: 285–93.
  • Morehouse LA, Aust SD. Reconstituted microsomal lipid peroxidation: ADP-Fe3 + -dependent peroxidation of phospholipid vesicles containing NADPH-cytochrome P450 reductase and cytochrome P450. Free Radic Biol Med. 1988; 4: 269–77.
  • Goldschmidt VM. Geochemistry. Clarendon Press: Oxford, 1954
  • Gutteridge JM, Nagy I, Maidt L, Floyd RA. ADP-iron as a Fenton reactant: radical reactions detected by spin trapping, hydrogen abstraction, and aromatic hydroxylation. Arch Biochem Biophys. 1990; 277: 422–8.
  • Christophersen OA, Haug A. Possible roles of oxidative stress, local circulatory failure and nutrition factors in the patogenesis of hypervirulent influenza: implications for therapy and global emergency preparedness. Microbial Ecology in Health and Disease. 2005; 17: 189–99.
  • Hansen SH, Andersen ML, Birkedal H, Cornett C, Wibrand F. The important role of taurine in oxidative metabolism. Adv Exp Med Biol. 2006; 583: 129–35.
  • Hansen SH, Andersen ML, Cornett C, Gradinaru R, Grunnet N. A role for taurine in mitochondrial function. J Biomed Sci. 2010; 1(17 Suppl): S23.
  • Haug A, Rødbotten R, Mydland LT, Christophersen OA. Increased broiler muscle carnosine and anserine following histidine supplementation of commercial broiler feed concentrate. Acta Agriculturae Scandinavica. Section A – Animal Sciences. 2008; 58(2): 71–7.
  • Messina SA, Dawson R Jr. Attenuation of oxidative damage to DNA by taurine and taurine analogs. Adv Exp Med Biol. 2000; 483: 355–67.
  • Dawson R Jr, Baker D, Eppler B, Tang E, Shih D, Hern H, Hu M. Taurine inhibition of metal-stimulated catecholamine oxidation. Neurotox Res. 2000; 2: 1–15.
  • Biasetti M, Dawson R Jr. Effects of sulfur containing amino acids on iron and nitric oxide stimulated catecholamine oxidation. Amino Acids. 2002; 22: 351–68.
  • Rose RC, Bode AM. Biology of free radical scavengers: an evaluation of ascorbate. FASEB J. 1993; 7: 1135–42.
  • Casalino E, Sblano C, Landriscina C. A possible mechanism for initiation of lipid peroxidation by ascorbate in rat liver microsomes. Int J Biochem Cell Biol. 1996; 28: 137–49.
  • Bachowski GJ, Thomas JP, Girotti AW. Ascorbate-enhanced lipid peroxidation in photooxidized cell membranes: cholesterol product analysis as a probe of reaction mechanism. Lipids. 1988; 23: 580–6.
  • Laudicina DC, Marnett LJ. Enhancement of hydroperoxide-dependent lipid peroxidation in rat liver microsomes by ascorbic acid. Arch Biochem Biophys. 1990; 278: 73–80.
  • Miller DM, Aust SD. Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation. Arch Biochem Biophys. 1989; 271: 113–9.
  • Christophersen OA, Haug A. More about hypervirulent avian influenza: is the world now better prepared?. Microb Ecol Health Dis. 2006; 19: 78–121.
  • Moxnes JF, Christophersen OA. The Spanish Flu as a worst case scenario?. Microb Ecol Health Dis. 2008; 20: 1–26.
  • Christophersen OA, Haug A. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids Health Dis. 2011 Jan 20;10:16.
  • Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992; 72: 101–63.
  • Seabra V, Stachlewitz RF, Thurman RG. Taurine blunts LPS-induced increases in intracellular calcium and TNF-alpha production by Kupffer cells. J Leukoc Biol. 1998; 64: 615–21.
  • Wheeler MD, Thurman RG. Production of superoxide and TNF-alpha from alveolar macrophages is blunted by glycine. Am J Physiol. 1999; 277: L952–9.
  • Wheeler MD, Ikejema K, Enomoto N, Stacklewitz RF, Seabra V, Zhong Z, Yin M, Schemmer P, Rose ML, Rusyn I, Bradford B, Thurman RG. Glycine: a new anti-inflammatory immunonutrient. Cell Mol Life Sci. 1999; 56: 843–56.
  • Kim SK, Kim YC. Attenuation of bacterial lipopolysaccharide-induced hepatotoxicity by betaine or taurine in rats. Food Chem Toxicol. 2002; 40: 545–9.
  • Wheeler MD, Stachlewitz RF, Yamashina S, Ikejima K, Morrow AL, Thurman RG. Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production. FASEB J. 2000; 14: 476–84.
  • Yanni G, Whelan A, Feighery C, Bresnihan B. Synovial tissue macrophages and joint erosion in rheumatoid arthritis. Ann Rheum Dis. 1994; 53: 39–44.
  • Burmester GR, Stuhlmüller B, Keyszer G, Kinne RW. Mononuclear phagocytes and rheumatoid synovitis. Mastermind or workhorse in arthritis?. Arthritis Rheum. 1997; 40: 5–18.
  • Bauerová K, Bezek A. Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen Physiol Biophys. 1999; 18: 15–20.
  • Bresnihan B. Pathogenesis of joint damage in rheumatoid arthritis. J Rheumatol. 1999; 26: 717–9.
  • Cunnane G, FitzGerald O, Hummel KM, Youssef PP, Gay RE, Gay S, Bresnihan B. Synovial tissue protease gene expression and joint erosions in early rheumatoid arthritis. Arthritis Rheum. 2001; 44: 1744–53.
  • Smeets TJ, Kraan MC, Galjaard S, Youssef PP, Smith MD, Tak PP. Analysis of the cell infiltrate and expression of matrix metalloproteinases and granzyme B in paired synovial biopsy specimens from the cartilage-pannus junction in patients with RA. Ann Rheum Dis. 2001; 60: 561–5.
  • Kraan MC, Reece RJ, Smeets TJ, Veale DJ, Emery P, Tak PP. Comparison of synovial tissues from the knee joints and the small joints of rheumatoid arthritis patients: Implications for pathogenesis and evaluation of treatment. Arthritis Rheum. 2002; 46: 2034–8.
  • Smeets TJ, Barg EC, Kraan MC, Smith MD, Breedveld FC, Tak PP. Analysis of the cell infiltrate and expression of proinflammatory cytokines and matrix metalloproteinases in arthroscopic synovial biopsies: comparison with synovial samples from patients with end stage, destructive rheumatoid arthritis. Ann Rheum Dis. 2003; 62: 635–8.
  • den Broeder AA, Wanten GJ, Oyen WJ, Naber T, van Riel PL, Barrera P. Neutrophil migration and production of reactive oxygen species during treatment with a fully human anti-tumor necrosis factor-alpha monoclonal antibody in patients with rheumatoid arthritis. J Rheumatol. 2003; 30: 232–7.
  • Opstvedt J, Olsen S, Urdahl N, Laksesvela B, Bjørnstad J. Næringsverdien av Fiskemel Produsert fra Ulike Fiskearter. [The Nutritive Value value of Fish Meal Produced from Different Species of Fish] [Report in Norwegian]. Meld. SSF (Sildolje- og Sildemelindustriens Forskningsinstitutt [Research Institute of the Norwegian Herring Oil and Meal Industry]. 1970; 4: 118–168.
  • Haug A, Christophersen OA, Kinabo J, Kaunda W, Eik LO. Use of dried kapenta and other products based on whole fish for complementing maize-based diets. AJFAND (Afr J Food Agric Nutr Dev). 2010; 10: 2478–2500.
  • Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, Collins LV. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther. 2003; 5: R234–40.
  • Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009; 16: 1438–44.
  • Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, Collins LV. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. Arthritis Res Ther. 2003; 5: R234–40.
  • Zhang Q, Itagaki K, Hauser CJ. Mitochondrial DNA is released by shock and activates neutrophils via p38 MAP kinase. Shock. 2010; 34: 55–9.
  • Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010; 464: 104–7.
  • Rabiet MJ, Huet E, Boulay F. Human mitochondria-derived N-formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur J Immunol. 2005; 35: 2486–95.
  • Raoof M, Zhang Q, Itagaki K, Hauser CJ. Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J Trauma. 2010; 68: 1328–32; discussion 1332-4.
  • Pullerits R, Bokarewa M, Jonsson IM, Verdrengh M, Tarkowski A. Extracellular cytochrome c, a mitochondrial apoptosis-related protein, induces arthritis. Rheumatology (Oxford). 2005; 44: 32–9.
  • Pullerits R, Jonsson IM, Verdrengh M, Bokarewa M, Andersson U, Erlandsson-Harris H, Tarkowski A. High mobility group box chromosomal protein 1, a DNA binding cytokine, induces arthritis. Arthritis Rheum. 2003; 48: 1693–700.
  • Fan J, Li Y, Levy RM, Fan JJ, Hackam DJ, Vodovotz Y, Yang H, Tracey KJ, Billiar TR, Wilson MA. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol. 2007; 178: 6573–80.
  • Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X, Stolz DB, Geller DA, Rosengart MR, Billiar TR. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med. 2007; 204: 2913–23.
  • Pullerits R, Jonsson IM, Kollias G, Tarkowski A. Induction of arthritis by high mobility group box chromosomal protein 1 is independent of tumour necrosis factor signalling. Arthritis Res Ther. 2008; 10: R72.
  • Tang D, Kang R, Zeh HJ, Lotze MT. High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal. 2011; 14: 1315–35.
  • Cillero-Pastor B, Martin MA, Arenas J, López-Armada MJ, Blanco FJ. Effect of nitric oxide on mitochondrial activity of human synovial cells. BMC Musculoskelet Disord. 2011; 12: 42.
  • López-Armada MJ, Caramés B, Martín MA, Cillero-Pastor B, Lires-Dean M, Fuentes-Boquete I, Arenas J, Blanco FJ. Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells. Osteoarthritis Cartilage. 2006; 14: 1011–22.
  • Mariappan N, Elks CM, Fink B, Francis J. TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. Free Radic Biol Med. 2009; 46: 462–70.
  • Kim J, Xu M, Xo R, Mates A, Wilson GL, Pearsall AW 4th, Grishko V. Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage. 2010; 18: 424–32.
  • Newsholme P, Curi R, Pithon Curi TC, Murphy CJ, Garcia C, Pires de Melo M. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease. J Nutr Biochem. 1999; 10: 316–24.
  • Newsholme P. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection?. J Nutr. 2001;131 ( 9 Suppl): 2515S–22S.; discussion 2523S-4S.
  • Frost DV, Lish PM. Selenium in biology. Annu Rev Pharmacol. 1975; 15: 259–84.
  • Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M. Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci. 2010; 1(17 Suppl): S6.
  • Amanzada A, Malik IA, Nischwitz M, Sultan S, Naz N, Ramadori G. Myeloperoxidase and elastase are only expressed by neutrophils in normal and in inflamed liver. Histochem Cell Biol. 2011; 135: 305–15.
  • Bunbury A, Potolicchio I, Maitra R, Santambrogio L. Functional analysis of monocyte MHC class II compartments. FASEB J. 2009; 23: 164–71.
  • Ray NJ, Jones AJ, Keen P. GABAB receptor modulation of the release of substance P from capsaicin-sensitive neurones in the rat trachea in vitro. Br J Pharmacol. 1991; 102: 801–4.
  • Chapman RW, Hey JA, Rizzo CA, Bolser DC. GABAB receptors in the lung. Trends Pharmacol Sci. 1993; 14: 26–9.
  • Minocha A, Galligan JJ. Excitatory and inhibitory responses mediated by GABAA and GABAB receptors in guinea pig distal colon. Eur J Pharmacol. 1993; 230: 187–93.
  • Ozdem SS, Sadan G, Usta C, Tasatargil A. Effect of experimental diabetes on GABA-mediated inhibition of neurally induced contractions in rat isolated trachea. Clin Exp Pharmacol Physiol. 2000; 27: 299–305.
  • Gentilini G, Franchi-Micheli S, Mugnai S, Bindi D, Zilletti L. GABA-mediated inhibition of the anaphylactic response in the guinea-pig trachea. Br J Pharmacol. 1995; 115: 389–94.
  • Ruiz de Valderas RM, Serrano MI, Serrano JS, Fernandez A. Effect of homotaurine in experimental analgesia tests. Gen Pharmacol. 1991; 22: 717–21.
  • Serrano I, Ruiz RM, Serrano JS, Fernandez A. GABAergic and cholinergic mediation in the antinociceptive action of homotaurine. Gen Pharmacol. 1992; 23: 421–6.
  • Silva MA, Cunha GM, Viana GS, Rao VS. Taurine modulates chemical nociception in mice. Braz J Med Biol Res. 1993; 26: 1319–24.
  • Serrano MI, Serrano JS, Guerrero MR, Fernandez A. Role of GABAA and GABAB receptors and peripheral cholinergic mechanisms in the antinociceptive action of taurine. Gen Pharmacol. 1994; 25: 1123–9.
  • Serrano MI, Serrano JS, Fernandez A, Asadi I, Serrano-Martino MC. GABAB receptors and opioid mechanisms involved in homotaurine-induced analgesia. Gen Pharmacol. 1998; 30: 411–5.
  • Cortijo J, Blesa S, Martinez-Losa M, Mata M, Seda E, Santangelo F, Morcillo EJ. Effects of taurine on pulmonary responses to antigen in sensitized Brown-Norway rats. Eur J Pharmacol. 2001; 431: 111–7.
  • Covarrubias J. Taurine and the lung: pharmacological intervention by aerosol route. Adv Exp Med Biol. 1994; 359: 413–7.
  • Fugelli K, Zachariassen KE. The distribution of taurine, gamma-aminobutyric acid and inorganic ions between plasma and erythrocytes in flounder (Platichthys flesus) at different plasma osmolalities. Comp Biochem Physiol A Comp Physiol. 1976; 55: 173–7.
  • Wapnir RA, Teichberg S. Regulation mechanisms of intestinal secretion: implications in nutrient absorption. J Nutr Biochem. 2002; 13: 190–199.
  • Farthing MJ. Novel agents for the control of secretory diarrhoea. Expert Opin Investig Drugs. 2004; 13: 777–85.
  • Lucas ML. Enterocyte chloride and water secretion into the small intestine after enterotoxin challenge: unifying hypothesis or intellectual dead end?. J Physiol Biochem. 2008; 64: 69–88.
  • Hartung HP, Toyka KV. Activation of macrophages by substance P: induction of oxidative burst and thromboxane release. Eur J Pharmacol. 1983; 89: 301–5.
  • Hartung HP, Wolters K, Toyka KV. Substance P: binding properties and studies on cellular responses in guinea pig macrophages. J Immunol. 1986; 136: 3856–63.
  • Peck R. Neuropeptides modulating macrophage function. Ann N Y Acad Sci. 1987; 496: 264–70.
  • Brunelleschi S, Vanni L, Ledda F, Giotti A, Maggi CA, Fantozzi R. Tachykinins activate guinea-pig alveolar macrophages: involvement of NK2 and NK1 receptors. Br J Pharmacol. 1990; 100: 417–20.
  • Boichot E, Lagente V, Paubert-Braquet M, Frossard N. Inhaled substance P induces activation of alveolar macrophages and increases airway responses in the guinea-pig. Neuropeptides. 1993; 25: 307–13.
  • Berman AS, Chancellor-Freeland C, Zhu G, Black PH. Substance P primes murine peritoneal macrophages for an augmented proinflammatory cytokine response to lipopolysaccharide. Neuroimmunomodulation. 1996; 3: 141–9.
  • Marriott I, Mason MJ, Elhofy A, Most KL. Substance P activates NF-kappaB independent of elevations in intracellular calcium in murine macrophages and dendritic cells. J Neuroimmunol. 2000; 102: 163–71.
  • Marriott I, Bost KL. Substance P receptor mediated macrophage responses. Adv Exp Med Biol. 2001; 493: 247–54.
  • Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides. 2003; 37: 355–61.
  • Weinstock JV. The role of substance P, hemokinin and their receptor in governing mucosal inflammation and granulomatous responses. Front Biosci. 2004; 9: 1936–43.
  • Bardelli C, Gunella G, Varsaldi F, Balbo P, Del Boca E, Bernardone IS, Amoruso A, Brunelleschi S. Expression of functional NK1 receptors in human alveolar macrophages: superoxide anion production, cytokine release and involvement of NF-kappaB pathway. Br J Pharmacol. 2005; 145: 385–96.
  • Koon HW, Pothoulakis C. Immunomodulatory properties of substance P: the gastrointestinal system as a model. Ann N Y Acad Sci. 2006; 1088: 23–40.
  • Serra MC, Bazzoni F, Della Bianca V, Greskowiak M, Rossi F. Activation of human neutrophils by substance P. Effect on oxidative metabolism, exocytosis, cytosolic Ca2 +  concentration and inositol phosphate formation. J Immunol. 1988; 141: 2118–24.
  • Perianin A, Snyderman R, Malfroy B. Substance P primes human neutrophil activation: a mechanism for neurological regulation of inflammation. Biochem Biophys Res Commun. 1989; 161: 520–4.
  • Brunelleschi S, Tarli S, Giotti A, Fantozzi R. Priming effects of mammalian tachykinins on human neutrophils. Life Sci. 1991; 48: PL1–5.
  • Kudlacz EM, Knippenberg RW. In vitro and in vivo effects of tachykinins on immune cell function in guinea pig airways. J Neuroimmunol. 1994; 50: 119–25.
  • Tanabe T, Otani H, Zeng XT, Mishima K, Ogawa R, Inagaki C. Inhibitory effects of calcitonin gene-related peptide on substance-P-induced superoxide production in human neutrophils. Eur J Pharmacol. 1996;314: 175–83. Erratum in: Eur J Pharmacol 1997;321:137-41.
  • Tanabe T, Otani H, Bao L, Mikami Y, Yasukura T, Ninomiya T, Ogawa R, Inagaki C. Intracellular signaling pathway of substance P-induced superoxide production in human neutrophils. Eur J Pharmacol. 1996; 299: 187–95.
  • Kontny E, Szczepańska K, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J, Maśliński W. The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin-8) production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum. 2000; 43: 2169–77.
  • Barua M, Liu Y, Quinn MR. Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: decreased NF-kappaB activation and IkappaB kinase activity. J Immunol. 2001; 167: 2275–81.
  • Liu Y, Quinn MR. Chemokine production by rat alveolar macrophages is inhibited by taurine chloramine. Immunol Lett. 2002; 80: 27–32.
  • Liu Y, Barua M, Serban V, Quinn MR. Production of inflammatory mediators by activated C6 cells is attenuated by taurine chloramine inhibition of NF-kappaB activation. Adv Exp Med Biol. 2003; 526: 365–72.
  • Quinn MR, Barua M, Liu Y, Serban V. Taurine chloramine inhibits production of inflammatory mediators and iNOS gene expression in alveolar macrophages; a tale of two pathways: part I, NF-kappaB signaling. Adv Exp Med Biol. 2003; 526: 341–8.
  • Schuller-Levis GB, Park E. Taurine: new implications for an old amino acid. FEMS Microbiol Lett. 2003; 226: 195–202.
  • Mainnemare A, Megarbane B, Soueidan A, Daniel A, Chapple IL. Hypochlorous acid and taurine-N-monochloramine in periodontal diseases. J Dent Res. 2004; 83: 823–31.
  • Kim JW, Kim C. Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated though Ras-ERK-NF-kappaB. Biochem Pharmacol. 2005; 70: 1352–60.
  • Jackett PS, Aber VR, Lowrie DB. Virulence of Mycobacterium tuberculosis and susceptibility to peroxidative killing systems. J Gen Microbiol. 1978; 107: 273–8.
  • van Dalen CJ, Kettle AJ. Substrates and products of eosinophil peroxidase. Biochem J. 2001; 358: 233–9.
  • Klebanoff SJ, Kazazi F. Inactivation of human immunodeficiency virus type 1 by the amine oxidase-peroxidase system. J Clin Microbiol. 1995; 33: 2054–7.
  • Buys J, Wever R, van Stigt R, Ruitenberg EJ. The killing of newborn larvae of Trichinella spiralis by eosinophil peroxidase in vitro. Eur J Immunol. 1981; 11: 843–5.
  • Anderson WA, Kang YH, Mohla S. Mammalian endogenous peroxidases as cellular markers and as biosynthetic endpoints of hormone-mediated activity: viewpoint from cytochemistry. Prog Histochem Cytochem. 1979; 11: 1–27.
  • Krauskopf KB. Introduction to Geochemistry2. Ed. McGraw-Hill Book Company: Singapore, 1982
  • Koivistoinen P. Mineral Element Composition of Finnish Foods: N,K,Ca,Mg,P,S,Fe,Cu,Mn,Zn,Mo,Co,Ni,Cr,F,Se,Si,Rb,Al,B,Br,Hg,As,Cd,Pb and Ash. Acta Agriculturae Scandinavica. Supplementum 22. Stockholm 1980.
  • Helz GR, Hsu RY. Volatile chloro- and bromocarbons in coastal waters. Limnol Oceanogr. 1978; 23: 858–69.
  • Nagata M, Saito K. The roles of cysteinyl leukotrienes in eosinophilic inflammation of asthmatic airways. Int Arch Allergy Immunol. 2003; 1(131 Suppl): 7–10.
  • Mori M, Takaku Y, Kobayashi T, Hagiwara K, Kanazawa M, Nagata M. Eosinophil superoxide anion generation induced by adhesion molecules and leukotriene D4. Int Arch Allergy Immunol. 2009; 1(149 Suppl): 31–8.
  • Nakagome K, Nagata M. Pathogenesis of airway inflammation in bronchial asthma. Auris Nasus Larynx. 2011Feb 18. [Epub ahead of print].
  • Wang W, Hansbro PM, Foster PS, Yang M. An alternate STAT6-independent pathway promotes eosinophil influx into blood during allergic airway inflammation. PLoS One. 2011; 6: e17766.
  • Figtree GA, Liu CC, Bibert S, Hamilton EJ, Garcia A, White CN, Chia KK, Cornelius F, Geering K, Rasmussen HH. Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation. Circ Res. 2009; 105: 185–93.
  • Szabó C, Módis K. Pathophysiological roles of peroxynitrite in circulatory shock. Shock. 2010; 1(34 Suppl): 4–14.
  • White CN, Liu CC, Garcia A, Hamilton EJ, Chia KK, Figtree GA, Rasmussen HH. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity. J Biol Chem. 2010; 285: 13712–20.
  • Ying J, Sharov V, Xu S, Jiang B, Gerrity R, Schöneich C, Cohen RA. Cysteine-674 oxidation and degradation of sarcoplasmic reticulum Ca2 +  ATPase in diabetic pig aorta. Free Radic Biol Med. 2008; 45: 756–62.
  • Lancel S, Qin F, Lennon SL, Zhang J, Tong X, Mazzini MJ, Kang YJ, Siwik DA, Cohen RA, Colucci WS. Oxidative posttranslational modifications mediate decreased SERCA activity and myocyte dysfunction in Galphaq-overexpressing mice. Circ Res. 2010; 107: 228–32.
  • Tang WH, Cheng WT, Kravtsov GM, Tong XY, Hou XY, Chung SK, Chung SS. Cardiac contractile dysfunction during acute hyperglycemia due to impairment of SERCA by polyol pathway-mediated oxidative stress. Am J Physiol Cell Physiol. 2010; 299: C643–53.
  • Rådmark O, Samuelsson B. 5-Lipoxygenase: mechanisms of regulation. J Lipid Res. 2009;50 Suppl: S40–5.
  • Manevich Y, Fisher AB. Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic Biol Med. 2005; 38: 1422–32.
  • Fisher AB. Peroxiredoxin 6: A bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. Antioxid Redox Signal. 2010 Oct 4. [Epub ahead of print].
  • Monteiro G, Horta BB, Pimenta DC, Augusto O, Netto LE. Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Proc Natl Acad Sci U S A. 2007; 104: 4886–91.
  • Peshenko IV, Shichi H. Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic Biol Med. 2001; 31: 292–303.
  • Fujii T, Fujii J, Taniguchi N. Augmented expression of peroxiredoxin VI in rat lung and kidney after birth implies an antioxidative role. Eur J Biochem. 2001; 268: 218–25.
  • Liu G, Feinstein SI, Wang Y, Dodia C, Fisher D, Yu K, Ho YS, Fisher AB. Comparison of glutathione peroxidase 1 and peroxiredoxin 6 in protection against oxidative stress in the mouse lung. Free Radic Biol Med. 2010; 49: 1172–81.
  • Ding Y, Lu B, Chen D, Meng L, Shen Y, Chen S. Proteomic analysis of colonic mucosa in a rat model of irritable bowel syndrome. Proteomics. 2010; 10: 2620–30.
  • Naito Y, Takagi T, Okada H, Omatsu T, Mizushima K, Handa O, Kokura S, Ichikawa H, Fujiwake H, Yoshikawa T. Identification of inflammation-related proteins in a murine colitis model by 2D fluorescence difference gel electrophoresis and mass spectrometry. J Gastroenterol Hepatol. 2010; 1(25 Suppl): S144–8.
  • Morrison J, Knoll K, Hessner MJ, Liang M. Effect of high glucose on gene expression in mesangial cells: upregulation of the thiol pathway is an adaptational response. Physiol Genomics. 2004; 17: 271–82.
  • Wu J, Wang F, Gong Y, Li D, Sha J, Huang X, Han X. Proteomic analysis of changes induced by nonylphenol in Sprague-Dawley rat Sertoli cells. Chem Res Toxicol. 2009; 22: 668–75.
  • Leyens G, Verhaeghe B, Landtmeters M, Marchandise J, Knoops B, Donnay I. Peroxiredoxin 6 is upregulated in bovine oocytes and cumulus cells during in vitro maturation: role of intercellular communication. Biol Reprod. 2004; 71: 1646–51.
  • Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW, Dias-Neto E. Proteome analysis of schizophrenia patients Wernicke's area reveals an energy metabolism dysregulation. BMC Psychiatry. 2009; 9: 17.
  • Sung JH, Cho EH, Kim MO, Koh PO. Identification of proteins differentially expressed by melatonin treatment in cerebral ischemic injury-a proteomics approach. J Pineal Res. 2009; 46: 300–6.
  • Srivastava AK. Assessment of salinity-induced antioxidative defense system of diazotrophic cyanobacterium Nostoc muscorum. J Microbiol Biotechnol. 2010; 20: 1506–12.
  • Elbaz A, Wei YY, Meng Q, Zheng Q, Yang ZM. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology. 2010; 19: 1285–93.
  • Sajitha Rajan S, Murugan K. Purification and kinetic characterization of the liverwort Pallavicinia lyelli (Hook.) S. Gray. cytosolic ascorbate peroxidase. Plant Physiol Biochem. 2010; 48: 758–63.
  • Kaul K, Lam KW, Fong D, Lok C, Berry M, Treble D. Ascorbate peroxidase in bovine retinal pigment epithelium and choroid. Curr Eye Res. 1988; 7: 675–9.
  • Wada N, Kinoshita S, Matsuo M, Amako K, Miyake C, Asada K. Purification and molecular properties of ascorbate peroxidase from bovine eye. Biochem Biophys Res Commun. 1998; 242: 256–61.
  • Mohr D, Bowry VW, Stocker R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta. 1992; 1126: 247–54.
  • Mohr D, Stocker R. Radical-mediated oxidation of isolated human very-low-density lipoprotein. Arterioscler Thromb. 1994; 14: 1186–92.
  • Tomasetti M, Littarru GP, Stocker R, Alleva R. Coenzyme Q10 enrichment decreases oxidative DNA damage in human lymphocytes. Free Radic Biol Med. 1999; 27: 1027–32.
  • Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol. 2007; 37: 31–7.
  • Belardinelli R, Tiano L, Littarru GP. Oxidative stress, endothelial function and coenzyme Q10. Biofactors. 2008; 32: 129–33.
  • Kulakowski EC, Maturo J. Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol. 1984; 33: 2835–8.
  • Maturo J 3rd, Kulakowski EC. Insulin-like activity of taurine. Adv Exp Med Biol. 1987; 217: 217–26.
  • Maturo J, Kulakowski EC. Taurine binding to the purified insulin receptor. Biochem Pharmacol. 1988; 37: 3755–60.
  • Sugihara H. Nagasawa S, Okabe H. Experimentelle und klinische Untersuchungen über Taurin. [Experimental and clinical studies on taurine] [Article in German], Klin. Wochenschrift. 1936; 15: 751–756.
  • Christophersen OA. Fiskeproteinkonsentrat – et næringsmiddel for fremtiden? [Fish protein concentrate – a food for the future?] [Article in Norwegian]. Inter Medicos. 1977; 23: 53–67.
  • Carver JD. Dietary nucleotides: effects on the immune and gastrointestinal systems. Acta Paediatr Suppl. 1999; 88: 83–8.
  • Carver JD. Advances in nutritional modifications of infant formulas. Am J Clin Nutr. 2003 Jun; 77: 1550S–1554S.
  • Jacobsen JG, Smith LH. Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev. 1968; 48: 424–511.
  • Fincham DA, Wolowyk MW, Young JD. Volume-sensitive taurine transport in fish erythrocytes. J Membr Biol. 1987; 96: 45–56.
  • Thoroed SM, Fugelli K. The Na+-independent taurine influx in flounder erythrocytes and its association with the volume regulatory taurine efflux. J Exp Biol. 1994; 186: 245–68.
  • Gaull GE, Wright CE, Tallan HH. Taurine in human lymphoblastoid cells: uptake and role in proliferation. Prog Clin Biol Res. 1983; 125: 297–303.
  • Nishio S, Negoro S, Hosokawa T, Hara H, Tanaka T, Deguchi Y, Ling J, Awata N, Azuma J, Aoike A, et al. The effect of taurine on age-related immune decline in mice: the effect of taurine on T cell and B cell proliferative response under costimulation with ionomycin and phorbol myristate acetate. Mech Ageing Dev. 1990; 52: 125–39.
  • Negoro S, Hara H. The effect of taurine on the age-related decline of the immune response in mice: the restorative effect on the T cell proliferative response to costimulation with ionomycin and phorbol myristate acetate. Adv Exp Med Biol. 1992; 315: 229–39.
  • Wang L, Zhao N, Zhang F, Yue W, Liang M. Effect of taurine on leucocyte function. Eur J Pharmacol. 2009; 616: 275–80.
  • Fazzino F, Obregón F, Lima L. Taurine and proliferation of lymphocytes in physically restrained rats. J Biomed Sci. 2010; 1(17 Suppl): S24.
  • Cubillos S, Urbina M, Lima L. Differential taurine effect on outgrowth from goldfish retinal ganglion cells after optic crush or axotomy. Influence of the optic tectum. Int J Dev Neurosci. 2000; 18: 843–53.
  • Cubillos S, Lima L. Taurine trophic modulation of goldfish retinal outgrowth and its interaction with the optic tectum. Amino Acids. 2006; 31: 325–31.
  • Hernández-Benítez R, Pasantes-Morales H, Saldaña IT, Ramos-Mandujano G. Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells. J Neurosci Res. 2010; 88: 1673–81.
  • Michalk DV, Wingenfeld P, Licht C, Ugur T, Siar LF. The mechanisms of taurine mediated protection against cell damage induced by hypoxia and reoxygenation. Adv Exp Med Biol. 1996; 403: 223–32.
  • Schliess F, Häussinger D. Cell hydration and insulin signalling. Cell Physiol Biochem. 2000; 10: 403–8.
  • Schliess F, Häussinger D. Cell volume and insulin signaling. Int Rev Cytol. 2003; 225: 187–228.
  • vom Dahl S, Schliess F, Reissmann R, Görg B, Weiergräber O, Kocalkova M, Dombrowski F, Häussinger D. Involvement of integrins in osmosensing and signaling toward autophagic proteolysis in rat liver. J Biol Chem. 2003; 278: 27088–95.
  • Häussinger D. Osmosensing and osmosignaling in the liver. Wien Med Wochenschr. 2008; 158: 549–52.
  • Dogra C, Changotra H, Wedhas N, Qin X, Wergedal JE, Kumar A. TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine. FASEB J. 2007; 21: 1857–69.
  • Judge AR, Koncarevic A, Hunter RB, Liou HC, Jackman RW, Kandarian SC. Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol. 2007; 292: C372–82.
  • Wu CL, Kandarian SC, Jackman RW. Identification of genes that elicit disuse muscle atrophy via the transcription factors p50 and Bcl-3. PLoS One. 2011; 6: e16171.
  • Hansen JM, Zhang H, Jones DP. Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-alpha-induced reactive oxygen species generation, NF-kappaB activation, and apoptosis. Toxicol Sci. 2006; 91: 643–50.
  • Yao H, Yang SR, Kode A, Rajendrasozhan S, Caito S, Adenuga D, Henry R, Edirisinghe I, Rahman I. Redox regulation of lung inflammation: role of NADPH oxidase and NF-kappaB signalling. Biochem Soc Trans. 2007; 35: 1151–5.
  • Rajendrasozhan S, Yang SR, Edirisinghe I, Yao H, Adenuga D, Rahman I. Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD. Antioxid Redox Signal. 2008; 10: 799–811.
  • Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC. Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J. 2002; 16: 529–38.
  • Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie. 2001; 83: 301–10.
  • Shringarpure R, Grune T, Davies KJ. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci. 2001; 58: 1442–50.
  • Shringarpure R, Grune T, Mehlhase J, Davies KJ. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem. 2003; 278: 311–8.
  • Kurepa J, Smalle JA. To misfold or to lose structure?: Detection and degradation of oxidized proteins by the 20S proteasome. Plant Signal Behav. 2008; 3: 386–8.
  • McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol. 2010; 298: C542–9.
  • Zhang X, Tenner TE Jr, Lombardini JB. Inhibition of rat vascular smooth muscle cell proliferation by taurine and taurine analogues. Biochem Pharmacol. 1999; 57: 1331–9.
  • Ren K, Wang YC, Yang SJ. Effects of taurine on proliferation of rat cardiac fibroblast]. [Article in Chinese]. Yao Xue Xue Bao. 2008; 43: 591–5.
  • Murakami S, Sakurai T, Toda Y, Morito A, Sakono M, Fukuda N. Prevention of neointima formation by taurine ingestion after carotid balloon injury. Vascul Pharmacol. 2010; 53: 177–84.
  • Xie H, Yang B, Zhou XM, Song FL, Li JM, Zhou K, Hu W, Peng YQ, Tang SY, Yuan LQ, Xiong SY, Liao XB. L-carnitine and taurine synergistically inhibit the proliferation and osteoblastic differentiation of vascular smooth muscle cells. Acta Pharmacol Sin. 2010; 31: 289–96.
  • Leonarduzzi G, Scavazza A, Biasi F, Chiarpotto E, Camandola S, Vogel S, Dargel R, Poli G. The lipid peroxidation end product 4-hydroxy − 2,3-nonenal up-regulates transforming growth factor beta1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. FASEB J. 1997; 11: 851–7.
  • Cordain L, Eaton SB, Miller JB, Mann N, Hill K. The paradoxical nature of hunter-gatherer diets: meat-based, yet non-atherogenic. Eur J Clin Nutr. 2002; 1(56 Suppl): S42–52.
  • O'Keefe JH Jr, Cordain L. Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: how to become a 21st-century hunter-gatherer. Mayo Clin Proc. 2004; 79: 101–8.
  • Frassetto LA, Schloetter M, Mietus-Synder M, Morris RC Jr, Sebastian A. Metabolic and physiologic improvements from consuming a Paleolithic, hunter-gatherer type diet. Eur J Clin Nutr. 2009; 63: 947–55.
  • Jönsson T, Granfeldt Y, Erlanson-Albertsson C, Ahrén B, Lindeberg S. A Paleolithic diet is more satiating per calorie than a Mediterranean-like diet in individuals with ischemic heart disease. Nutr Metab (Lond). 2010; 7: 85.
  • Ströhle A, Hahn A, Sebastian A. Latitude, local ecology, and hunter-gatherer dietary acid load: implications from evolutionary ecology. Am J Clin Nutr. 2010; 92: 940–5.
  • Stiner MC, Munro ND. On the evolution of diet and landscape during the Upper Paleolithic through Mesolithic at Franchthi Cave (Peloponnese, Greece). J Hum Evol. 2011; Mar 2. [Epub ahead of print].
  • Leakey RE, Lewin R. People of the Lake. Mankind & Its Beginnings. Avon Books., New York, 1979 ( First published 1978)
  • Eidlitz K. Food and emergency foods in the circumpolar area. Studia ethnographica Upsaliensis 32, University of Uppsala., Uppsala, 1969
  • Eidlitz K. Föda och nödföda – hur människan använde vildmarkens tillgångar [Food and emergency food – how humans were utilizing the resources of the wilderness] [Swedish book]. LT, Stockholm 1971
  • Dyerberg J. Coronary heart disease in Greenland Inuit: a paradox. Implications for western diet patterns. Arctic Med Res. 1989; 48: 47–54.
  • Dyerberg J, Schmidt EB. n-3 fatty acids and cardiovascular disease-observations generated by studies in Greenland Eskimos. Wien Klin Wochenschr. 1989; 101: 277–82.
  • Bigard AX. Risks of energy drinks in youths]. [Article in French]. Arch Pediatr. 2010; 17: 1625–31.
  • Kundurović Z, Sćepović M, Causević A, Mornjaković Z. Histochemical aspects and fine structural characteristics of thyreocytes in pinealectomized and melatonin treated rats prior to irradiation. Acta Med Croatica. 1991; 45: 347–55.
  • Mohan N, Sadeghi K, Reiter RJ, Meltz ML. The neurohormone melatonin inhibits cytokine, mitogen and ionizing radiation induced NF-kappa B. Biochem Mol Biol Int. 1995; 37: 1063–70.
  • Reiter RJ. The role of the neurohormone melatonin as a buffer against macromolecular oxidative damage. Neurochem Int. 1995; 27: 453–60.
  • Reiter RJ. Functional pleiotropy of the neurohormone melatonin: antioxidant protection and neuroendocrine regulation. Front Neuroendocrinol. 1995; 16: 383–415.
  • Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow-Walden L, Chuang J, Ortiz GG, Acuña-Castroviejo D. A review of the evidence supporting melatonin's role as an antioxidant. J Pineal Res. 1995; 18: 1–11.
  • Vijayalaxmi, Reiter RJ, Meltz ML. Melatonin protects human blood lymphocytes from radiation-induced chromosome damage. Mutat Res. 1995;346: 23–31.
  • Vijayalaxmi., Reiter RJ, Sewerynek E, Poeggeler B, Leal BZ, Meltz ML. Marked reduction of radiation-induced micronuclei in human blood lymphocytes pretreated with melatonin. Radiat Res. 1995;143: 102–6.
  • Vijayalaxmi., Reiter RJ, Herman TS, Meltz ML. Melatonin and radioprotection from genetic damage: in vivo/in vitro studies with human volunteers. Mutat Res. 1996;371: 221–8.
  • Reiter R, Tang L, Garcia JJ, Muñoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 1997; 60: 2255–71.
  • Reiter RJ, Guerrero JM, Garcia JJ, Acuña-Castroviejo D. Reactive oxygen intermediates, molecular damage, and aging. Relation to melatonin. Ann N Y Acad Sci. 1998; 854: 410–24.
  • Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub ST, Vijayalaxmi., Shepherd AM. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun. 1998;253: 614–20.
  • Vijayalaxmi., Reiter RJ, Herman TS, Meltz ML. Melatonin reduces gamma radiation-induced primary DNA damage in human blood lymphocytes. Mutat Res. 1998;397: 203–8.
  • Vijayalaxmi, Reiter RJ, Meltz ML, Herman TS. Melatonin: possible mechanisms involved in its ‘radioprotective’ effect. Mutat Res. 1998;404: 187–9.
  • Badr FM, El Habit OH, Harraz MM. Radioprotective effect of melatonin assessed by measuring chromosomal damage in mitotic and meiotic cells. Mutat Res. 1999; 444: 367–72.
  • Reiter RJ. Oxidative damage to nuclear DNA: amelioration by melatonin. NEL Review. Neuro Endocrinol Lett. 1999; 20: 145–150.
  • Vijayalaxmi.,Meltz ML, Reiter RJ, Herman TS. Melatonin and protection from genetic damage in blood and bone marrow: whole-body irradiation studies in mice. J Pineal Res. 1999;27: 221–5.
  • Karbownik M, Reiter RJ. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med. 2000; 225: 9–22.
  • Karbownik M, Reiter RJ, Qi W, Garcia JJ, Tan DX, Manchester LC, Vijayalaxmi. Protective effects of melatonin against oxidation of guanine bases in DNA and decreased microsomal membrane fluidity in rat liver induced by whole body ionizing radiation. Mol Cell Biochem. 2000;211: 137–44.
  • Kim JK, Lee CJ. Effect of exogenous melatonin on the ovarian follicles in gamma-irradiated mouse. Mutat Res. 2000; 449: 33–9.
  • Kim BC, Shon BS, Ryoo YW, Kim SP, Lee KS. Melatonin reduces X-ray irradiation-induced oxidative damages in cultured human skin fibroblasts. J Dermatol Sci. 2001; 26: 194–200.
  • Koc M, Buyukokuroglu ME, Taysi S. The effect of melatonin on peripheral blood cells during total body irradiation in rats. Biol Pharm Bull. 2002; 25: 656–7.
  • Vijayalaxmi., Thomas CR Jr, Reiter RJ, Herman TS. Melatonin: from basic research to cancer treatment clinics. J Clin Oncol. 2002;20: 2575–601.
  • Bonnefont-Rousselot D, Guilloz V, Lepage S, Bizard C, Duriez P, Lesieur D, Delattre J, Jore D, Gardès-Albert M. Protection of endogenous beta-carotene in LDL oxidized by oxygen free radicals in the presence of supraphysiological concentrations of melatonin. Redox Rep. 2003; 8: 95–104.
  • Koc M, Taysi S, Buyukokuroglu ME, Bakan N. Melatonin protects rat liver against irradiation-induced oxidative injury. J Radiat Res (Tokyo). 2003; 44: 211–5.
  • Koc M, Taysi S, Emin Buyukokuroglu M, Bakan N. The effect of melatonin against oxidative damage during total-body irradiation in rats. Radiat Res. 2003; 160: 251–5.
  • Sener G, Jahovic N, Tosun O, Atasoy BM, Yeğen BC. Melatonin ameliorates ionizing radiation-induced oxidative organ damage in rats. Life Sci. 2003; 74: 563–72.
  • Taysi S, Koc M, Büyükokuroğlu ME, Altinkaynak K, Sahin YN. Melatonin reduces lipid peroxidation and nitric oxide during irradiation-induced oxidative injury in the rat liver. J Pineal Res. 2003; 34: 173–7.
  • Yavuz MN, Yavuz AA, Ulku C, Sener M, Yaris E, Kosucu P, Karslioglu I. Protective effect of melatonin against fractionated irradiation-induced epiphyseal injury in a weanling rat model. J Pineal Res. 2003; 35: 288–94.
  • Weiss JF, Landauer MR. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology. 2003; 189: 1–20.
  • Erol FS, Topsakal C, Ozveren MF, Kaplan M, Ilhan N, Ozercan IH, Yildiz OG. Protective effects of melatonin and vitamin E in brain damage due to gamma radiation: an experimental study. Neurosurg Rev. 2004; 27: 65–9.
  • Oliınyk EV, Meshchyshen IF. Effect of melatonin and radiation on pro- and antioxidant state of the liver and blood of rats]. [Article in Ukrainian]. Ukr Biokhim Zh. 2004; 76: 144–7.
  • Reiter RJ, Tan DX, Gitto E, Sainz RM, Mayo JC, Leon J, Manchester LC, Vijayalaxmi., Kilic E, Kilic U. Pharmacological utility of melatonin in reducing oxidative cellular and molecular damage. Pol J Pharmacol. 2004;56: 159–70.
  • Undeger U, Giray B, Zorlu AF, Oge K, Baçaran N. Protective effects of melatonin on the ionizing radiation induced DNA damage in the rat brain. Exp Toxicol Pathol. 2004; 55: 379–84.
  • Sener G, Atasoy BM, Ersoy Y, Arbak S, Sengöz M, Yeğen BC. Melatonin protects against ionizing radiation-induced oxidative damage in corpus cavernosum and urinary bladder in rats. J Pineal Res. 2004; 37: 241–6.
  • Vijayalaxmi., Reiter RJ, Tan DX, Herman TS, Thomas CR Jr. Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys. 2004;59: 639–53.
  • Karslioglu I, Ertekin MV, Taysi S, Koçer I, Sezen O, Gepdiremen A, Koç M, Bakan N. Radioprotective effects of melatonin on radiation-induced cataract. J Radiat Res (Tokyo). 2005; 46: 277–82.
  • Monobe M, Hino M, Sumi M, Uzawa A, Hirayama R, Ando K, Kojima S. Protective effects of melatonin on gamma-ray induced intestinal damage. Int J Radiat Biol. 2005; 81: 855–60.
  • Alicelebić S, Mornjaković Z, Susko I, Cosović E, Beganović-Petrović A. The role of pineal gland and exogenous melatonin on the irradiation stress response of suprarenal gland. Bosn J Basic Med Sci. 2006; 6: 18–21.
  • Hussein MR, Abu-Dief EE, Abou El-Ghait AT, Adly MA, Abdelraheem MH. Melatonin and roentgen irradiation of the testis. Fertil Steril. 2006; 86: 750–2.
  • Hussein MR, Abu-Dief EE, Abou El-Ghait AT, Adly MA, Abdelraheem MH. Morphological evaluation of the radioprotective effects of melatonin against X-ray-induced early and acute testis damage in Albino rats: an animal model. Int J Exp Pathol. 2006; 87: 237–50.
  • Kopjar N, Miocić S, Ramić S, Milić M, Viculin T. Assessment of the radioprotective effects of amifostine and melatonin on human lymphocytes irradiated with gamma-rays in vitro. Arh Hig Rada Toksikol. 2006; 57: 155–63.
  • Kundurovic Z, Sofic E. The effects of exogenous melatonin on the morphology of thyrocytes in pinealectomized and irradiated rats. J Neural Transm. 2006; 113: 49–58.
  • Maurya DK, Devasagayam TP, Nair CK. Some novel approaches for radioprotection and the beneficial effect of natural products. Indian J Exp Biol. 2006; 44: 93–114.
  • Sharma S, Haldar C. Melatonin prevents X-ray irradiation induced oxidative damage in peripheral blood and spleen of the seasonally breeding rodent, Funambulus pennanti during reproductively active phase. Int J Radiat Biol. 2006; 82: 411–9.
  • Yilmaz S, Yilmaz E. Effects of melatonin and vitamin E on oxidative-antioxidative status in rats exposed to irradiation. Toxicology. 2006; 222: 1–7.
  • Zhou G, Kawata T, Furusawa Y, Aoki M, Hirayama R, Ando K, Ito H. Protective effects of melatonin against low- and high-LET irradiation. J Radiat Res (Tokyo). 2006; 47: 175–81.
  • El-Missiry MA, Fayed TA, El-Sawy MR, El-Sayed AA. Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol Environ Saf. 2007; 66: 278–86.
  • Guney Y, Hicsonmez A, Uluoglu C, Guney HZ, Ozel Turkcu U, Take G, Yucel B, Caglar G, Bilgihan A, Erdogan D, Nalca Andrieu M, Kurtman C, Zengil H. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine. Braz J Med Biol Res. 2007; 40: 1305–14.
  • Shirazi A, Ghobadi G, Ghazi-Khansari M. A radiobiological review on melatonin: a novel radioprotector. J Radiat Res (Tokyo). 2007; 48: 263–72.
  • Yildirim O, Comoğlu S, Yardimci S, Akmansu M, Bozkurt G, Avunduk MC. Melatonin treatment for prevention of oxidative stress: involving histopathological changes. Gen Physiol Biophys. 2007; 26: 126–32.
  • Hussein MR, Abu-Dief EE, Kamel E, Abou El-Ghait AT, Abdulwahed SR, Ahmad MH. Melatonin and roentgen irradiation-induced acute radiation enteritis in Albino rats: an animal model. Cell Biol Int. 2008; 32: 1353–61.
  • Reiter RJ, Korkmaz A. Clinical aspects of melatonin. Saudi Med J. 2008; 29: 1537–47.
  • Sharma S, Haldar C, Chaube SK. Effect of exogenous melatonin on X-ray induced cellular toxicity in lymphatic tissue of Indian tropical male squirrel, Funambulus pennanti. Int J Radiat Biol. 2008; 84: 363–74.
  • Taysi S, Memisogullari R, Koc M, Yazici AT, Aslankurt M, Gumustekin K, Al B, Ozabacigil F, Yilmaz A, Tahsin Ozder H. Melatonin reduces oxidative stress in the rat lens due to radiation-induced oxidative injury. Int J Radiat Biol. 2008; 84: 803–8.
  • Topkan E, Tufan H, Yavuz AA, Bacanli D, Onal C, Kosdak S, Yavuz MN. Comparison of the protective effects of melatonin and amifostine on radiation-induced epiphyseal injury. Int J Radiat Biol. 2008; 84: 796–802.
  • Yildirim O, Comoğlu S, Yardimci S, Akmansu M, Bozkurt G, Sürücü S. Preserving effects of melatonin on the levels of glutathione and malondialdehyde in rats exposed to irradiation. Gen Physiol Biophys. 2008; 27: 32–7.
  • Assayed ME, Abd El-Aty AM. Protection of rat chromosomes by melatonin against gamma radiation-induced damage. Mutat Res. 2009; 677: 14–20.
  • Hamada N. Recent insights into the biological action of heavy-ion radiation. J Radiat Res (Tokyo). 2009; 50: 1–9.
  • Jang SS, Kim WD, Park WY. Melatonin exerts differential actions on X-ray radiation-induced apoptosis in normal mice splenocytes and Jurkat leukemia cells. J Pineal Res. 2009; 47: 147–55.
  • Take G, Erdogan D, Helvacioglu F, Göktas G, Ozbey G, Uluoglu C, Yücel B, Guney Y, Hicsonmez A, Ozkan S. Effect of melatonin and time of administration on irradiation-induced damage to rat testes. Braz J Med Biol Res. 2009; 42: 621–8.
  • Sharma S, Haldar C, Chaube SK, Laxmi T, Singh SS. Long-term melatonin administration attenuates low-LET gamma-radiation-induced lymphatic tissue injury during the reproductively active and inactive phases of Indian palm squirrels (Funambulus pennanti). Br J Radiol. 2010; 83: 137–51.
  • Cekan E, Slanina P, Bergman K, Tribukait B. Effects of dietary supplementation with selenomethionine on the teratogenic effect of ionizing radiation in mice. Acta Radiol Oncol. 1985; 24: 459–63.
  • Cekan E, Tribukait B, Vokal-Borek H. Protective effect of selenium against ionizing radiation-induced malformations in mice. Acta Radiol Oncol. 1985; 24: 267–71.
  • Borek C, Ong A, Mason H, Donahue L, Biaglow JE. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms. Proc Natl Acad Sci U S A. 1986; 83: 1490–4.
  • Hall EJ, Hei TK. Modulating factors in the expression of radiation-induced oncogenic transformation. Environ Health Perspect. 1990; 88: 149–55.
  • Knizhnikov VA, Komleva VA, Tutel'ian VA, Novoselova GP, Golubkina NA, Trushina EN, Kumpulaínen I, Edelman K. The effect of an increased dietary intake of organic selenium on the resistance of rats to ionizing radiation, aflatoxin B1 and infection]. [Article in Russian]. Vopr Pitan. 1991;(4): 52–5.
  • Weiss JF, Srinivasan V, Kumar KS, Landauer MR. Radioprotection by metals: selenium. Adv Space Res. 1992; 12: 223–31.
  • Sun E, Xu H, Liu Q, Zhou J, Zuo P, Wang J. Effect of selenium in recovery of immunity damaged by H2O2 and 60Co radiation. Biol Trace Elem Res. 1995; 48: 239–50.
  • Rodemann HP, Hehr T, Bamberg M. Relevance of the radioprotective effect of sodium selenite]. [Article in German]. Med Klin (Munich). 1999; 3(94 Suppl): 39–41.
  • Schleicher UM, Lopez Cotarelo C, Andreopoulos D, Handt S, Ammon J. Radioprotection of human endothelial cells by sodium selenite]. [Article in German]. Med Klin (Munich). 1999; 3(94 Suppl): 35–8.
  • Mutlu-Türkoğlu U, Erbil Y, Oztezcan S, Olgaç V, Toker G, Uysal M. The effect of selenium and/or vitamin E treatments on radiation-induced intestinal injury in rats. Life Sci. 2000; 66: 1905–13.
  • Yanardağ R, Bolkent S, Kizir A. Protective effects of DL-alpha-tocopherol acetate and sodium selenate on the liver of rats exposed to gamma radiation. Biol Trace Elem Res. 2001; 83: 263–73.
  • Micke O, Bruns F, Mücke R, Schäfer U, Glatzel M, DeVries AF, Schönekaes K, Kisters K, Büntzel J. Selenium in the treatment of radiation-associated secondary lymphedema. Int J Radiat Oncol Biol Phys. 2003; 56: 40–9.
  • Sagowski C, Wenzel S, Tesche S, Jenicke L, Kehrl W, Roeser K, Metternich FU. Sodium selenite reduces acute radiogenic damage of the rat parotid glands during fractionated irradiation]. [Article in German]. HNO. 2004; 52: 1067–75.
  • Sagowski C, Wenzel S, Jenicke L, Metternich FU, Jaehne M. Sodium selenite is a potent radioprotector of the salivary glands of the rat: acute effects on the morphology and parenchymal function during fractioned irradiation. Eur Arch Otorhinolaryngol. 2005; 262: 459–64.
  • Gehrisch A, Dörr W. Effects of systemic or topical administration of sodium selenite on early radiation effects in mouse oral mucosa. Strahlenther Onkol. 2007; 183: 36–42.
  • Pontual ML, Tuji FM, Barros SP, Bóscolo FN, Novaes PD, de Almeida SM. Ultrastructural evaluation of the radioprotective effect of sodium selenite on submandibular glands in rats. J Appl Oral Sci. 2007; 15: 162–8.
  • Baliga MS, Diwadkar-Navsariwala V, Koh T, Fayad R, Fantuzzi G, Diamond AM. Selenoprotein deficiency enhances radiation-induced micronuclei formation. Mol Nutr Food Res. 2008; 52: 1300–4.
  • Margulies BS, Damron TA, Allen MJ. The differential effects of the radioprotectant drugs amifostine and sodium selenite treatment in combination with radiation therapy on constituent bone cells, Ewing's sarcoma of bone tumor cells, and rhabdomyosarcoma tumor cells in vitro. J Orthop Res. 2008; 26: 1512–9.
  • Micke O, Schomburg L, Buentzel J, Kisters K, Muecke R. Selenium in oncology: from chemistry to clinics. Molecules. 2009; 14: 3975–88.
  • Rocha AS, Ramos-Perez FM, Bóscolo FN, Manzi FR, Cchicarelo M, Almeida SM. Effect of sodium selenite on bone repair in tibiae of irradiated rats. Braz Dent J. 2009; 20: 186–90.
  • Gençel O, Naziroglu M, Celik O, Yalman K, Bayram D. Selenium and vitamin E modulates radiation-induced liver toxicity in pregnant and nonpregnant rat: effects of colemanite and hematite shielding. Biol Trace Elem Res. 2010; 135: 253–63.
  • Muecke R, Schomburg L, Buentzel J, Kisters K, Micke O. German Working Group Trace Elements and Electrolytes in Oncology. Selenium or no selenium-that is the question in tumor patients: a new controversy. Integr Cancer Ther. 2010; 9: 136–41.
  • Tuji FM, Pontual ML, Barros SP, Almeida SM, Bóscolo FN. Ultrastructural assessment of the radioprotective effects of sodium selenite on parotid glands in rats. J Oral Sci. 2010; 52: 369–75.
  • Dethmers JK, Meister A. Glutathione export by human lymphoid cells: depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc Natl Acad Sci U S A. 1981; 78: 7492–6.
  • Jensen GL, Meister A. Radioprotection of human lymphoid cells by exogenously supplied glutathione is mediated by gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A. 1983; 80: 4714–7.
  • Wellner VP, Anderson ME, Puri RN, Jensen GL, Meister A. Radioprotection by glutathione ester: transport of glutathione ester into human lymphoid cells and fibroblasts. Proc Natl Acad Sci U S A. 1984; 81: 4732–5.
  • Vos O, Roos-Verhey WS. Radioprotection by glutathione esters and cysteamine in normal and glutathione-depleted mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1988; 53: 273–81.
  • Shaheen AA, Hassan SM. Radioprotection of whole-body gamma-irradiation-induced alteration in some haematological parameters by cysteine, vitamin E and their combination in rats. Strahlenther Onkol. 1991; 167: 498–501.
  • Sridharan S, Shyamaladevi CS. Protective effect of N-acetylcysteine against gamma ray induced damages in rats-biochemical evaluations. Indian J Exp Biol. 2002; 40: 181–6.
  • Neal R, Matthews RH, Lutz P, Ercal N. Antioxidant role of N-acetyl cysteine isomers following high dose irradiation. Free Radic Biol Med. 2003; 34: 689–95.
  • Liu Y, Zhang H, Zhang L, Zhou Q, Wang X, Long J, Dong T, Zhao W. Antioxidant N-acetylcysteine attenuates the acute liver injury caused by X-ray in mice. Eur J Pharmacol. 2007; 575: 142–8.
  • Kilciksiz S, Demirel C, Erdal N, Gürgül S, Tamer L, Ayaz L, Ors Y. The effect of N-acetylcysteine on biomarkers for radiation-induced oxidative damage in a rat model. Acta Med Okayama. 2008; 62: 403–9.
  • Mansour HH, Hafez HF, Fahmy NM, Hanafi N. Protective effect of N-acetylcysteine against radiation induced DNA damage and hepatic toxicity in rats. Biochem Pharmacol. 2008; 75: 773–80.
  • Demirel C, Kilçiksiz S, Ay OI, Gürgül S, Ay ME, Erdal N. Effect of N-acetylcysteine on radiation-induced genotoxicity and cytotoxicity in rat bone marrow. J Radiat Res (Tokyo). 2009; 50: 43–50.
  • Tiwari P, Kumar A, Balakrishnan S, Kushwaha HS, Mishra KP. Radiation-induced micronucleus formation and DNA damage in human lymphocytes and their prevention by antioxidant thiols. Mutat Res. 2009; 676: 62–8.
  • Hartman PE, Hartman Z, Citardi MJ. Ergothioneine, histidine, and two naturally occurring histidine dipeptides as radioprotectors against gamma-irradiation inactivation of bacteriophages T4 and P22. Radiat Res. 1988; 114: 319–30.
  • Guney Y, Turkcu UO, Hicsonmez A, Andrieu MN, Guney HZ, Bilgihan A, Kurtman C. Carnosine may reduce lung injury caused by radiation therapy. Med Hypotheses. 2006; 66: 957–9.
  • Altas E, Ertekin MV, Gundogdu C, Demirci E. L-carnitine reduces cochlear damage induced by gamma irradiation in Guinea pigs. Ann Clin Lab Sci. 2006; 36: 312–8.
  • Mansour HH. Protective role of carnitine ester against radiation-induced oxidative stress in rats. Pharmacol Res. 2006; 54: 165–71.
  • Uçüncü H, Ertekin MV, Yörük O, Sezen O, Ozkan A, Erdoğan F, Kiziltunç A, Gündoğdu C. Vitamin E and L-carnitine, separately or in combination, in the prevention of radiation-induced oral mucositis and myelosuppression: a controlled study in a rat model. J Radiat Res (Tokyo). 2006; 47: 91–102.
  • Kocer I, Taysi S, Ertekin MV, Karslioglu I, Gepdiremen A, Sezen O, Serifoglu K. The effect of L-carnitine in the prevention of ionizing radiation-induced cataracts: a rat model. Graefes Arch Clin Exp Ophthalmol. 2007; 245: 588–94.
  • Sezen O, Ertekin MV, Demircan B, Karslioğlu I, Erdoğan F, Koçer I, Calik I, Gepdiremen A. Vitamin E and L-carnitine, separately or in combination, in the prevention of radiation-induced brain and retinal damages. Neurosurg Rev. 2008;31:205-13; discussion 213.
  • Caloglu M, Yurut-Caloglu V, Durmus-Altun G, Oz-Puyan F, Ustun F, Cosar-Alas R, Saynak M, Parlar S, Turan FN, Uzal C. Histopathological and scintigraphic comparisons of the protective effects of L-carnitine and amifostine against radiation-induced late renal toxicity in rats. Clin Exp Pharmacol Physiol. 2009; 36: 523–30.
  • Topcu-Tarladacalisir Y, Kanter M, Uzal MC. Role of L-carnitine in the prevention of seminiferous tubules damage induced by gamma radiation: a light and electron microscopic study. Arch Toxicol. 2009; 83: 735–46.
  • Kanter M, Topcu-Tarladacalisir Y, Parlar S. Antiapoptotic effect of L-carnitine on testicular irradiation in rats. J Mol Histol. 2010; 41: 121–8.
  • Christophersen OA. Radiation biochemistry. In: Brune D, Hellborg R, Persson BRR, Pääkkönen. Radiation at Home, Outdoors and in the Workplace. Scandinavian Science Publishers: Oslo, 2001, pp. 52–61.
  • Kohen R, Yamamoto Y, Cundy KC, Ames BN. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A. 1988; 85: 3175–9.
  • Aruoma OI, Laughton MJ, Halliwell B. Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo?. Biochem J. 1989; 264: 863–9.
  • Babizhayev MA, Seguin MC, Gueyne J, Evstigneeva RP, Ageyeva EA, Zheltukhina GA. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities. Biochem J. 1994; 304: 509–16.
  • Kang JH, Kim KS, Choi SY, Kwon HY, Won MH, Kang TC. Carnosine and related dipeptides protect human ceruloplasmin against peroxyl radical-mediated modification. Mol Cells. 2002; 13: 498–502.
  • Kang JH, Kim KS, Choi SY, Kwon HY, Won MH, Kang TC. Protective effects of carnosine, homocarnosine and anserine against peroxyl radical-mediated Cu,Zn-superoxide dismutase modification. Biochim Biophys Acta. 2002; 1570: 89–96.
  • Kang JH, Kim KS, Choi SY, Kwon HY, Won MH, Kang TC. Protection by carnosine-related dipeptides against hydrogen peroxide-mediated ceruloplasmin modification. Mol Cells. 2002; 13: 107–12.
  • Hipkiss AR. Carnosine and its possible roles in nutrition and health. Adv Food Nutr Res. 2009; 57: 87–154.
  • Babizhayev MA, Yegorov YE. Reactive oxygen species and the aging eye: Specific role of metabolically active mitochondria in maintaining lens function and in the initiation of the oxidation-induced maturity onset cataract-a novel platform of mitochondria-targeted antioxidants with broad therapeutic potential for redox regulation and detoxification of oxidants in eye diseases. Am J Ther. 2010Oct 22. [Epub ahead of print].
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and MedicineFourth Edition. Oxford University Press. 2007
  • Fontana M, Pinnen F, Lucente G, Pecci L. Prevention of peroxynitrite-dependent damage by carnosine and related sulphonamido pseudodipeptides. Cell Mol Life Sci. 2002; 59: 546–51.
  • Yanai N, Shiotani S, Hagiwara S, Nabetani H, Nakajima M. Antioxidant combination inhibits reactive oxygen species mediated damage. Biosci Biotechnol Biochem. 2008; 72: 3100–6.
  • Nicoletti VG, Santoro AM, Grasso G, Vagliasindi LI, Giuffrida ML, Cuppari C, Purrello VS, Stella AM, Rizzarelli E. Carnosine interaction with nitric oxide and astroglial cell protection. J Neurosci Res. 2007; 85: 2239–45.
  • Babizhayev MA, Deyev AI. Management of the virulent influenza virus infection by oral formulation of nonhydrolized carnosine and isopeptide of carnosine attenuating proinflammatory cytokine-induced nitric oxide production. Am J Ther. 2010. Sep 14. [Epub ahead of print].
  • Tamura EK, Silva CL, Markus RP. Melatonin reduces nitric oxide synthase activity in rat hypothalamus. J Pineal Res. 2006; 41: 267–74.
  • Pozo D, Reiter RJ, Calvo JR, Guerrero JM. Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem. 1997; 65: 430–42.
  • León J, Macías M, Escames G, Camacho E, Khaldy H, Martín M, Espinosa A, Gallo MA, Acuña-Castroviejo D. Structure-related inhibition of calmodulin-dependent neuronal nitric-oxide synthase activity by melatonin and synthetic kynurenines. Mol Pharmacol. 2000; 58: 967–75.
  • Sáenz DA, Turjanski AG, Sacca GB, Marti M, Doctorovich F, Sarmiento MI, Estrin DA, Rosenstein RE. Physiological concentrations of melatonin inhibit the nitridergic pathway in the Syrian hamster retina. J Pineal Res. 2002; 33: 31–6.
  • Tamura EK, Silva CL, Markus RP. Melatonin inhibits endothelial nitric oxide production in vitro. J Pineal Res. 2006; 41: 267–74.
  • Ouyang H, Vogel HJ. Melatonin and serotonin interactions with calmodulin: NMR, spectroscopic and biochemical studies. Biochim Biophys Acta. 1998; 1383: 37–47.
  • Fukunaga K, Horikawa K, Shibata S, Takeuchi Y, Miyamoto E. Ca2 + /calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. J Neurosci Res. 2002; 70: 799–807.
  • Douki T, Cadet J. Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Radic Res. 1996; 24: 369–80.
  • Sodum RS, Fiala ES. Analysis of peroxynitrite reactions with guanine, xanthine, and adenine nucleosides by high-pressure liquid chromatography with electrochemical detection: C8-nitration and -oxidation. Chem Res Toxicol. 2001; 14: 438–50.
  • Cao Z, Li Y. Potent inhibition of peroxynitrite-induced DNA strand breakage by ethanol: possible implications for ethanol-mediated cardiovascular protection. Pharmacol Res. 2004; 50: 13–9.
  • Yu H, Venkatarangan L, Wishnok JS, Tannenbaum SR. Quantitation of four guanine oxidation products from reaction of DNA with varying doses of peroxynitrite. Chem Res Toxicol. 2005; 18: 1849–57.
  • Jia Z, Zhu H, Vitto MJ, Misra BR, Li Y, Misra HP. Alpha-lipoic acid potently inhibits peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation: implications for the neuroprotective effects of alpha-lipoic acid. Mol Cell Biochem. 2009; 323: 131–8.
  • Chen W, Jia Z, Zhu H, Zhou K, Li Y, Misra HP. Ethyl pyruvate inhibits peroxynitrite-induced DNA damage and hydroxyl radical generation: implications for neuroprotection. Neurochem Res. 2010; 35: 336–42.
  • Kjosbakken J, Larsen H. The non-protein nitrogenous compounds of fish used in meal production, with special reference to capelin (Mallotus villosus). Fiskeridirektoratets Skrifter. Serie Ernæring. 1981; 2: 7–24.
  • Abe H, Dobson GP, Hoeger U, Parkhouse WS. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle. Am J Physiol. 1985; 249: R449–54.
  • Suzuki T, Hirano T, Suyama M. Free imidazole compounds in white and dark muscles of migratory marine fish. Comp Biochem Physiol B. 1987; 87: 615–9.
  • Okuma E, Abe H. Major buffering constituents in animal muscle. Comp Biochem Physiol Comp Physiol. 1992; 102: 37–41.
  • Bragadóttir M. Endogenous antioxidants in fish. A literature review submitted in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE in food science. Department of Food Science. University of Iceland. Reykjavik 2001. -.
  • Bragadóttir M, Reichert J, Jónsdóttir R, Ólafsdóttir G. Characterisation and antioxidant properties of aqueous extracts from capelin (Mallotus villosus). Verkefnaskýrsla Rf 39-06. Rannsóknastofnun fiskidnadarins/Icelandic Fisheries Laboratories. Desember 2006.
  • Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997; 94: 3290–5.
  • Li L, Connor EE, Berger SH, Wyatt MD. Determination of apoptosis, uracil incorporation, DNA strand breaks, and sister chromatid exchanges under conditions of thymidylate deprivation in a model of BER deficiency. Biochem Pharmacol. 2005; 70: 1458–68.
  • Berger SH, Pittman DL, Wyatt MD. Uracil in DNA: consequences for carcinogenesis and chemotherapy. Biochem Pharmacol. 2008; 76: 697–706.
  • Fenech M. Folate, DNA damage and the aging brain. Mech Ageing Dev. 2010; 131: 236–41.
  • Fenech M. The role of folic acid and vitamin B12 in genomic stability of human cells. Mutat Res. 2001; 475: 57–67.
  • Choi SW, Friso S, Ghandour H, Bagley PJ, Selhub J, Mason JB. Vitamin B-12 deficiency induces anomalies of base substitution and methylation in the DNA of rat colonic epithelium. J Nutr. 2004; 134: 750–5.
  • Kapiszewska M, Kalemba M, Wojciech U, Milewicz T. Uracil misincorporation into DNA of leukocytes of young women with positive folate balance depends on plasma vitamin B12 concentrations and methylenetetrahydrofolate reductase polymorphisms. A pilot study. J Nutr Biochem. 2005; 16: 467–78.
  • Hambidge KM, Casey CE, Krebs NF. Zinc. In: Mertz W. Trace Elements in Human and Animal Nutrition – Fifth Edition. Vol. 2. New York: Academic Press.: 1986, pp. 1–137.
  • Christophersen OA, Haug A, Steinnes E. Deforestation, mineral nutrient depletion in the soil and HIV disease. Science without borders. Transactions of the International Academy of Science H&E. Special Edition International Conference Oslo 2009. Innsbruck, SWB, 2010, pp. 26–34.
  • Gromer S, Arscott LD, Williams CH Jr, Schirmer RH, Becker K. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J Biol Chem. 1998; 273: 20096–101.
  • Soldatenkov VA, Smulson M. Poly(ADP-ribose) polymerase in DNA damage-response pathway: implications for radiation oncology. Int J Cancer. 2000; 90: 59–67.
  • Soldatenkov VA, Potaman VN. DNA-binding properties of poly(ADP-ribose) polymerase: a target for anticancer therapy. Curr Drug Targets. 2004; 5: 357–65.
  • Lapucci A, Pittelli M, Rapizzi E, Felici R, Moroni F, Chiarugi A. Poly(ADP-ribose) polymerase-1 is a nuclear epigenetic regulator of mitochondrial DNA repair and transcription. Mol Pharmacol. 2011 Mar 11. [Epub ahead of print].
  • Rawling JM, Jackson TM, Driscoll ER, Kirkland JB. Dietary niacin deficiency lowers tissue poly(ADP-ribose) and NAD+ concentrations in Fischer-344 rats. J Nutr. 1994; 124: 1597–603.
  • Spronck JC, Kirkland JB. Niacin deficiency increases spontaneous and etoposide-induced chromosomal instability in rat bone marrow cells in vivo. Mutat Res. 2002; 508: 83–97.
  • Kostecki LM, Thomas M, Linford G, Lizotte M, Toxopeus L, Bartleman AP, Kirkland JB. Niacin deficiency delays DNA excision repair and increases spontaneous and nitrosourea-induced chromosomal instability in rat bone marrow. Mutat Res. 2007; 625: 50–61.
  • Yu TW, Anderson D. Reactive oxygen species-induced DNA damage and its modification: a chemical investigation. Mutat Res. 1997; 379: 201–10.
  • Brunton LD, Lazo JS, Parker KL. Goodman & Gilman's The Pharmacological Basis of Therapeutics. Eleventh edition. McGraw-Hill: New York, 2006
  • Mungunsukh O, Griffin AJ, Lee YH, Day RM. Bleomycin induces the extrinsic apoptotic pathway in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2010 Feb 12. [Epub ahead of print].
  • Yong LC, Petersen MR. High dietary niacin intake is associated with decreased chromosome translocation frequency in airline pilots. Br J Nutr. 2011; 105: 496–505.
  • Ames BN. Micronutrient deficiencies. A major cause of DNA damage. Ann N Y Acad Sci. 1999; 889: 87–106.
  • Maestroni GJ. kappa-Opioid receptors in marrow stroma mediate the hematopoietic effects of melatonin-induced opioid cytokines. Ann N Y Acad Sci. 1998; 840: 411–9.
  • Maestroni GJ, Zammaretti F, Pedrinis E. Hematopoietic effect of melatonin involvement of type 1 kappa-opioid receptor on bone marrow macrophages and interleukin-1. J Pineal Res. 1999; 27: 145–53.
  • Molinero P, Soutto M, Benot S, Hmadcha A, Guerrero JM. Melatonin is responsible for the nocturnal increase observed in serum and thymus of thymosin alpha1 and thymulin concentrations: observations in rats and humans. J Neuroimmunol. 2000; 103: 180–8.
  • Arias J, Melean E, Valero N, Pons H, Chacín-Bonilla L, Larreal Y, Bonilla E. Effect of melatonin on lymphocyte proliferation and production of interleukin-2 (IL-2) and interleukin-1 beta (IL-1 beta) in mice splenocytes] [Article in Spanish]. Invest Clin. 2003; 44: 41–50.
  • Hoijman E, Rocha Viegas L, Keller Sarmiento MI, Rosenstein RE, Pecci A. Involvement of Bax protein in the prevention of glucocorticoid-induced thymocytes apoptosis by melatonin. Endocrinology. 2004; 145: 418–25.
  • Miller SC, Pandi-Perumal SR, Esquifino AI, Cardinali DP, Maestroni GJ. The role of melatonin in immuno-enhancement: potential application in cancer. Int J Exp Pathol. 2006;87: 81–7. Erratum in: Int J Exp Pathol. 2006;87:251. Pandi, Perumal SR [corrected to Pandi-Perumal, SR].
  • Presman DM, Hoijman E, Ceballos NR, Galigniana MD, Pecci A. Melatonin inhibits glucocorticoid receptor nuclear translocation in mouse thymocytes. Endocrinology. 2006; 147: 5452–9.
  • Batmanabane M. Melatonin is responsible for the nocturnal increase observed in serum and thymus of alpha1-thymosin and thymulin concentrations: observations in rats and humans. J Neuroimmunol. 2007; 183: 239; author reply 240.
  • Cardinali DP, Esquifino AI, Srinivasan V, Pandi-Perumal SR. Melatonin and the immune system in aging. Neuroimmunomodulation. 2008; 15: 272–8.
  • Srinivasan V, Spence DW, Trakht I, Pandi-Perumal SR, Cardinali DP, Maestroni GJ. Immunomodulation by melatonin: its significance for seasonally occurring diseases. Neuroimmunomodulation. 2008; 15: 93–101.
  • Zhou W, Wang P, Tao L. Effect of melatonin on proliferation of neonatal cord blood mononuclear cells. World J Pediatr. 2009; 5: 300–3.
  • Viviani S, Negretti E, Orazi A, Sozzi G, Santoro A, Lissoni P, Esposti G, Fraschini F. Preliminary studies on melatonin in the treatment of myelodysplastic syndromes following cancer chemotherapy. J Pineal Res. 1990; 8: 347–54.
  • Bregani ER, Lissoni P, Rossini F, Barni S, Tancini G, Brivio F, Conti A, Maestroni GJ. Prevention of interleukin-2-induced thrombocytopenia during the immunotherapy of cancer by a concomitant administration of the pineal hormone melatonin. Recenti Prog Med. 1995; 86: 231–3.
  • Lissoni P, Barni S, Brivio F, Rossini F, Fumagalli L, Tancini G. Treatment of cancer-related thrombocytopenia by low-dose subcutaneous interleukin-2 plus the pineal hormone melatonin: a biological phase II study. J Biol Regul Homeost Agents. 1995; 9: 52–4.
  • Lissoni P, Barni S, Brivio F, Rossini F, Fumagalli L, Ardizzoia A, Tancini G. A biological study on the efficacy of low-dose subcutaneous interleukin-2 plus melatonin in the treatment of cancer-related thrombocytopenia. Oncology. 1995; 52: 360–2.
  • Lissoni P, Tancini G, Barni S, Paolorossi F, Rossini F, Maffé P, Di Bella L. The pineal hormone melatonin in hematology and its potential efficacy in the treatment of thrombocytopenia. Recenti Prog Med. 1996; 87: 582–5.
  • Lissoni P, Tancini G, Barni S, Paolorossi F, Ardizzoia A, Conti A, Maestroni G. Treatment of cancer chemotherapy-induced toxicity with the pineal hormone melatonin. Support Care Cancer. 1997; 5: 126–9.
  • Lissoni P, Barni S, Mandalà M, Ardizzoia A, Paolorossi F, Vaghi M, Longarini R, Malugani F, Tancini G. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer. 1999; 35: 1688–92.
  • Lissoni P, Mandala M, Rossini F, Fumagalli L, Barni S. Growth factors: thrombopoietic property of the pineal hormone melatonin. Hematology. 1999; 4: 335–343.
  • Lissoni P, Tancini G, Paolorossi F, Mandalà M, Ardizzoia A, Malugani F, Giani L, Barni S. Chemoneuroendocrine therapy of metastatic breast cancer with persistent thrombocytopenia with weekly low-dose epirubicin plus melatonin: a phase II study. J Pineal Res. 1999; 26: 169–73.
  • Lissoni P. Is there a role for melatonin in supportive care?. Support Care Cancer. 2002; 10: 110–6.
  • Whitnall MH, Elliott TB, Harding RA, Inal CE, Landauer MR, Wilhelmsen CL, McKinney L, Miner VL, Jackson WE3rd, Loria RM, Ledney GD, Seed TM. Androstenediol stimulates myelopoiesis and enhances resistance to infection in gamma-irradiated mice. Int J Immunopharmacol. 2000; 22: 1–14.
  • Whitnall MH, Inal CE, Jackson WE 3rd, Miner VL, Villa V, Seed TM. In vivo radioprotection by 5-androstenediol: stimulation of the innate immune system. Radiat Res. 2001; 156: 283–93.
  • Stickney DR, Dowding C, Garsd A, Ahlem C, Whitnall M, McKeon M, Reading C, Frincke J. 5-androstenediol stimulates multilineage hematopoiesis in rhesus monkeys with radiation-induced myelosuppression. Int Immunopharmacol. 2006; 6: 1706–13.
  • Stickney DR, Dowding C, Authier S, Garsd A, Onizuka-Handa N, Reading C, Frincke JM. 5-androstenediol improves survival in clinically unsupported rhesus monkeys with radiation-induced myelosuppression. Int Immunopharmacol. 2007: 500–5.
  • Gudkov SV, Gudkova OY, Chernikov AV, Bruskov VI. Protection of mice against X-ray injuries by the post-irradiation administration of guanosine and inosine. Int J Radiat Biol. 2009; 85: 116–25.
  • Gudkov SV, Gudkova OY, Chernikov AV, Bruskov VI. Tocopherol succinate: a promising radiation countermeasure. Int J Radiat Biol. 2009; 85: 116–25.
  • Akushevich IV, Veremeyeva GA, Dimov GP, Ukraintseva SV, Arbeev KG, Akleyev AV, Yashin AI. Modeling deterministic effects in hematopoietic system caused by chronic exposure to ionizing radiation in large human cohorts. Health Phys. 2010; 99: 322–9.
  • Akushevich IV, Veremeyeva GA, Dimov GP, Ukraintseva SV, Arbeev KG, Akleyev AV, Yashin AI. Modeling hematopoietic system response caused by chronic exposure to ionizing radiation. Radiat Environ Biophys. 2011; Jan 23. [Epub ahead of print].
  • Lissoni P, Bucovec R, Bonfanti A, Giani L, Mandelli A, Roselli MG, Rovelli F, Fumagalli L. Thrombopoietic properties of 5-methoxytryptamine plus melatonin versus melatonin alone in the treatment of cancer-related thrombocytopenia. J Pineal Res. 2001; 30: 123–6.
  • Lissoni P. Biochemotherapy with immunomodulating pineal hormones other than melatonin: 5-methoxytryptamine as a new oncostatic pineal agent. Pathol Biol (Paris). 2007; 55: 198–200.
  • Chahbouni M, Escames G, Venegas C, Sevilla B, García JA, López LC, Muñoz-Hoyos A, Molina-Carballo A, Acuña-Castroviejo D. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J Pineal Res. 2010; 48: 282–9.
  • Okinaga K, Iinuma H, Kitamura Y, Yokohata T, Inaba T, Fukushima R. Effect of immunotherapy and spleen preservation on immunological function in patients with gastric cancer. J Exp Clin Cancer Res. 2006; 25: 339–49.
  • Chen IJ, Yen CF, Lin KJ, Lee CL, Soong YK, Lai CH, Lin CT. Vaccination with OK-432 followed by TC-1 tumor lysate leads to significant antitumor effects. Reprod Sci. 2011. Feb 14. [Epub ahead of print].
  • Gerner EW, Tome ME, Fry SE, Bowden GT. Inhibition of ionizing radiation recovery processes in polyamine-depleted Chinese hamster cells. Cancer Res. 1988; 48: 4881–5.
  • Snyder RD. Inhibition of X-ray-induced DNA strand break repair in polyamine-depleted HeLa cells. Int J Radiat Biol. 1989; 55: 773–82.
  • Snyder RD, Lachmann PJ. Hyperthermia, polyamine depletion, and inhibition of X-ray-induced DNA strand break repair. Radiat Res. 1989; 120: 121–8.
  • Held KD, Awad S. Effects of polyamines and thiols on the radiation sensitivity of bacterial transforming DNA. Int J Radiat Biol. 1991; 59: 699–710.
  • Snyder RD, Schroeder KK. Radiosensitivity of polyamine-depleted HeLa cells and modulation by the aminothiol WR-1065. Radiat Res. 1994; 137: 67–75.
  • Williams JR, Casero RA, Dillehay LE. The effect of polyamine depletion on the cytotoxic response to PUVA, gamma rays and UVC in V79 cells in vitro. Biochem Biophys Res Commun. 1994; 201: 1–7.
  • Spotheim-Maurizot M, Ruiz S, Sabattier R, Charlier M. Radioprotection of DNA by polyamines. Int J Radiat Biol. 1995; 68: 571–7.
  • Newton GL, Aguilera JA, Ward JF, Fahey RC. Polyamine-induced compaction and aggregation of DNA-a major factor in radioprotection of chromatin under physiological conditions. Radiat Res. 1996; 145: 776–80.
  • Chiu S, Oleinick NL. Radioprotection against the formation of DNA double-strand breaks in cellular DNA but not native cellular chromatin by the polyamine spermine. Radiat Res. 1997; 148: 188–92.
  • Newton GL, Aguilera JA, Ward JF, Fahey RC. Effect of polyamine-induced compaction and aggregation of DNA on the formation of radiation-induced strand breaks: quantitative models for cellular radiation damage. Radiat Res. 1997; 148: 272–84.
  • Chiu S, Oleinick NL. Radioprotection of cellular chromatin by the polyamines spermine and putrescine: preferential action against formation of DNA-protein crosslinks. Radiat Res. 1998; 149: 543–9.
  • Ha HC, Yager JD, Woster PA, Casero RA Jr. Structural specificity of polyamines and polyamine analogues in the protection of DNA from strand breaks induced by reactive oxygen species. Biochem Biophys Res Commun. 1998; 244: 298–303.
  • Sy D, Hugot S, Savoye C, Ruiz S, Charlier M, Spotheim-Maurizot M. Radioprotection of DNA by spermine: a molecular modelling approach. Int J Radiat Biol. 1999; 75: 953–61.
  • Warters RL, Newton GL, Olive PL, Fahey RC. Radioprotection of human cell nuclear DNA by polyamines: radiosensitivity of chromatin is influenced by tightly bound spermine. Radiat Res. 1999; 151: 354–62.
  • Douki T, Bretonniere Y, Cadet J. Protection against radiation-induced degradation of DNA bases by polyamines. Radiat Res. 2000; 153: 29–35.
  • Kitada M, Igarashi K, Hirose S, Kitagawa H. Inhibition by polyamines of lipid peroxide formation in rat liver microsomes. Biochem Biophys Res Commun. 1979; 87: 388–94.
  • Kitada M, Naito Y, Igarashi K, Hirose S, Kanakubo Y, Kitagawa H. Possible mechanism of inhibition by polyamines of lipid peroxidation in rat liver microsomes. Res Commun Chem Pathol Pharmacol. 1981; 33: 487–97.
  • Ohmori S, Misaizu T, Kitada M, Kitagawa H, Igarashi K, Hirose S, Kanakubo Y. Polyamine lowered the hepatic lipid peroxide level in rats. Res Commun Chem Pathol Pharmacol. 1988; 62: 235–49.
  • Løvaas E, Carlin G. Spermine: an anti-oxidant and anti-inflammatory agent. Free Radic Biol Med. 1991; 11: 455–61.
  • Khan AU, Di Mascio P, Medeiros MH, Wilson T. Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc Natl Acad Sci U S A. 1992; 89: 11428–30.
  • Khan AU, Mei YH, Wilson T. A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen. Proc Natl Acad Sci U S A. 1992; 89: 11426–7.
  • Pavlovic DD, Uzunova P, Galabova T, Peneva V, Sokolova Z, Bjelakovic G, Ribarov S. Polyamines as modulators of lipoperoxidation. Gen Physiol Biophys. 1992; 11: 203–11.
  • Matkovics B, Kecskemeti V, Varga SI, Novak Z, Kertesz Z. Antioxidant properties of di- and polyamines. Comp Biochem Physiol B. 1993; 104: 475–9.
  • Løvaas E. Hypothesis: spermine may be an important epidermal antioxidant. Med Hypotheses. 1995; 45: 59–67.
  • Løvaas E. Antioxidative and metal-chelating effects of polyamines. Adv Pharmacol. 1997; 38: 119–49.
  • Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA Jr. The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A. 1998; 95: 11140–5.
  • Grudziński IP, Frankiewicz-Józko A. Further studies on the anti-oxidative effect of putrescine in sodium nitrite-treated rats. Rocz Panstw Zakl Hig. 2002; 53: 11–7.
  • Farriol M, Segovia-Silvestre T, Venereo Y, Orta X. Antioxidant effect of polyamines on erythrocyte cell membrane lipoperoxidation after free-radical damage. Phytother Res. 2003; 17: 44–7.
  • Bellé NA, Dalmolin GD, Fonini G, Rubin MA, Rocha JB. Polyamines reduces lipid peroxidation induced by different pro-oxidant agents. Brain Res. 2004; 1008: 245–51.
  • Das KC, Misra HP. Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem. 2004; 262: 127–33.
  • Fujisawa S, Kadoma Y. Kinetic evaluation of polyamines as radical scavengers. Anticancer Res. 2005; 25: 965–9.
  • von Deutsch AW, Mitchell CD, Williams CE, Dutt K, Silvestrov NA, Klement BJ, Abukhalaf IK, von Deutsch DA. Polyamines protect against radiation-induced oxidative stress. Gravit Space Biol Bull. 2005; 18: 109–10.
  • Hernández SM, Sánchez MS, de Tarlovsky MN. Polyamines as a defense mechanism against lipoperoxidation in Trypanosoma cruzi. Acta Trop. 2006; 98: 94–102.
  • Sava IG, Battaglia V, Rossi CA, Salvi M, Toninello A. Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic Biol Med. 2006; 41: 1272–81.
  • Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Casero RAJr. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids. 2007; 33: 231–40.
  • Mozdzan M, Szemraj J, Rysz J, Stolarek RA, Nowak D. Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions. Int J Biochem Cell Biol. 2006; 38: 69–81.
  • Bardócz S, Duguid TJ, Brown DS, Grant G, Pusztai A, White A, Ralph A. The importance of dietary polyamines in cell regeneration and growth. Br J Nutr. 1995; 73: 819–28.
  • Wallace HM. The polyamines: past, present and future. Essays Biochem. 2009; 46: 1–9.
  • Landau G, Bercovich Z, Park MH, Kahana C. The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation. J Biol Chem. 2010; 285: 12474–81.
  • Pollack PF, Koldovsk? O, Nishioka K. Polyamines in human and rat milk and in infant formulas. Am J Clin Nutr. 1992; 56: 371–5.
  • Romain N, Dandrifosse G, Jeusette F, Forget P. Polyamine concentration in rat milk and food, human milk, and infant formulas. Pediatr Res. 1992; 32: 58–63.
  • Buts JP, De Keyser N, De Raedemaeker L, Collette E, Sokal EM. Polyamine profiles in human milk, infant artificial formulas, and semi-elemental diets. J Pediatr Gastroenterol Nutr. 1995; 21: 44–9.
  • Dorhout B, van Beusekom CM, Huisman M, Kingma AW, de Hoog E, Boersma ER, Muskiet FA. Estimation of 24-hour polyamine intake from mature human milk. J Pediatr Gastroenterol Nutr. 1996; 23: 298–302.
  • Löser C. Polyamines in human and animal milk. Br J Nutr. 2000; 1(84 Suppl): S55–8.
  • Larqué E, Sabater-Molina M, Zamora S. Biological significance of dietary polyamines. Nutrition. 2007; 23: 87–95.
  • Wang JY, McCormack SA, Viar MJ, Johnson LR. Stimulation of proximal small intestinal mucosal growth by luminal polyamines. Am J Physiol. 1991; 261: G504–11.
  • Buts JP, De Keyser N, Kolanowski J, Sokal E, Van Hoof F. Maturation of villus and crypt cell functions in rat small intestine. Role of dietary polyamines. Dig Dis Sci. 1993; 38: 1091–8.
  • Wéry I, Dandrifosse G. Evolution of biochemical parameters characterizing the proximal small intestine after orally administered spermine in unweaned rats. Endocr Regul. 1993; 27: 201–7.
  • Harada E, Hashimoto Y, Syuto B. Orally administered spermine induces precocious intestinal maturation of macromolecular transport and disaccharidase development in suckling rats. Comp Biochem Physiol A Physiol. 1994; 109: 667–73.
  • Kaouass M, Deloyer P, Dandrifosse G. Intestinal development in suckling rats: direct or indirect spermine action?. Digestion. 1994; 55: 160–7.
  • Kaouass M, Deloyer P, Wery I, Dandrifosse G. Analysis of structural and biochemical events occurring in the small intestine after dietary polyamine ingestion in suckling rats. Dig Dis Sci. 1996; 41: 1434–44.
  • Wéry I, Deloyer P, Dandrifosse G. Effects of a single dose of orally-administered spermine on the intestinal development of unweaned rats. Arch Physiol Biochem. 1996; 104: 163–72.
  • Kaouass M, Deloyer P, Gouders I, Peulen O, Dandrifosse G. Role of interleukin-1 beta, interleukin-6, and TNF-alpha in intestinal maturation induced by dietary spermine in rats. Endocrine. 1997; 6: 187–94.
  • Capano G, Bloch KJ, Carter EA, Dascoli JA, Schoenfeld D, Harmatz PR. Polyamines in human and rat milk influence intestinal cell growth in vitro. J Pediatr Gastroenterol Nutr. 1998; 27: 281–6.
  • Patel AR, Li J, Bass BL, Wang JY. Expression of the transforming growth factor-beta gene during growth inhibition following polyamine depletion. Am J Physiol. 1998; 275: C590–8.
  • Rao JN, Li J, Li L, Bass BL, Wang JY. Differentiated intestinal epithelial cells exhibit increased migration through polyamines and myosin II. Am J Physiol. 1999; 277: G1149–58.
  • Greco S, Hugueny I, George P, Perrin P, Louisot P, Biol MC. Influence of spermine on intestinal maturation of the glycoprotein glycosylation process in neonatal rats. Biochem J. 2000; 345: 69–75.
  • Peulen O, Dandrifosse G. Cyclosporine A inhibits partially spermine-induced differentiation but not cell loss of suckling rat small intestine. Dig Dis Sci. 2000; 45: 750–4.
  • Gréco S, Niepceron E, Hugueny I, George P, Louisot P, Biol MC. Dietary spermidine and spermine participate in the maturation of galactosyltransferase activity and glycoprotein galactosylation in rat small intestine. J Nutr. 2001; 131: 1890–7.
  • Rao JN, Li L, Golovina VA, Platoshyn O, Strauch ED, Yuan JX, Wang JY. Ca2 + -RhoA signaling pathway required for polyamine-dependent intestinal epithelial cell migration. Am J Physiol Cell Physiol. 2001; 280: C993–1007.
  • Biol-N'Garagba MC, Greco S, George P, Hugueny I, Louisot P. Polyamine participation in the maturation of glycoprotein fucosylation, but not sialylation, in rat small intestine. Pediatr Res. 2002; 51: 625–34.
  • Rao JN, Guo X, Liu L, Zou T, Murthy KS, Yuan JX, Wang JY. Polyamines regulate Rho-kinase and myosin phosphorylation during intestinal epithelial restitution. Am J Physiol Cell Physiol. 2003; 284: C848–59.
  • Peulen O, Dandrifosse G. Spermine-induced maturation in Wistar rat intestine: a cytokine-dependent mechanism. J Pediatr Gastroenterol Nutr. 2004; 38: 524–32.
  • Rao JN, Liu L, Zou T, Marasa BS, Boneva D, Wang SR, Malone DL, Turner DJ, Wang JY. Polyamines are required for phospholipase C-gamma1 expression promoting intestinal epithelial restitution after wounding. Am J Physiol Gastrointest Liver Physiol. 2007; 292: G335–43.
  • Sabater-Molina M, Larqué E, Torrella F, Plaza J, Lozano T, Muñoz A, Zamora S. Effects of dietary polyamines at physiologic doses in early-weaned piglets. Nutrition. 2009; 25: 940–6.
  • Leroy D, Schmid N, Behr JP, Filhol O, Pares S, Garin J, Bourgarit JJ, Chambaz EM, Cochet C. Direct identification of a polyamine binding domain on the regulatory subunit of the protein kinase casein kinase 2 by photoaffinity labeling. J Biol Chem. 1995; 270: 17400–6.
  • Leroy D, Heriché JK, Filhol O, Chambaz EM, Cochet C. Binding of polyamines to an autonomous domain of the regulatory subunit of protein kinase CK2 induces a conformational change in the holoenzyme. A proposed role for the kinase stimulation. J Biol Chem. 1997; 272: 20820–7.
  • Trembley JH, Chen Z, Unger G, Slaton J, Kren BT, Van Waes C, Ahmed K. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors. 2010; 36: 187–95.
  • Li D, Dobrowolska G, Krebs EG. The physical association of casein kinase 2 with nucleolin. J Biol Chem. 1996; 271: 15662–8.
  • Li D, Dobrowolska G, Krebs EG. Identification of proteins that associate with protein kinase CK2. Mol Cell Biochem. 1999; 191: 223–8.
  • Li D, Meier UT, Dobrowolska G, Krebs EG. Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J Biol Chem. 1997; 272: 3773–9.
  • Szebeni A, Hingorani K, Negi S, Olson MO. Role of protein kinase CK2 phosphorylation in the molecular chaperone activity of nucleolar protein B23. J Biol Chem. 2003; 278: 9107–15.
  • Bandyopadhyay K, Gjerset RA. Protein kinase CK2 is a central regulator of topoisomerase I hyperphosphorylation and camptothecin sensitivity in cancer cell lines. Biochemistry. 2011; 50: 704–14.
  • Paytubi S, Morrice NA, Boudeau J, Proud CG. The N-terminal region of ABC50 interacts with eukaryotic initiation factor eIF2 and is a target for regulatory phosphorylation by CK2. Biochem J. 2008; 409: 223–31.
  • Ampofo E, Kietzmann T, Zimmer A, Jakupovic M, Montenarh M, Götz C. Phosphorylation of the von Hippel-Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1alpha mediated transcription. Int J Biochem Cell Biol. 2010; 42: 1729–35.
  • Laitinen PH, Hietala OA, Pulkka AE, Pajunen AE. Purification of mouse brain ornithine decarboxylase reveals its presence as an inactive complex with antizyme. Biochem J. 1986; 236: 613–6.
  • Kilpeläinen PT, Hietala OA. Activation of rat brain ornithine decarboxylase by GTP. Biochem J. 1994; 300: 577–82.
  • Anagnostopoulos CG, Kyriakidis DA. Regulation of the Escherichia coli biosynthetic ornithine decarboxylase activity by phosphorylation and nucleotides. Biochim Biophys Acta. 1996; 1297: 228–34.
  • Moxnes JF, Christophersen OA. Counter attacking pandemic H5N1 bird influenza by counter pandemic. Microb Ecol Health Dis. 2006; 20: 1–26.