1,110
Views
22
CrossRef citations to date
0
Altmetric
Research papers

Pharmaceutical inhibition of mTOR in the common marmoset: effect of rapamycin on regulators of proteostasis in a non-human primate

, , , &
Article: 31793 | Received 31 Mar 2016, Accepted 27 May 2016, Published online: 23 Jun 2016

References

  • Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, etal. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010; 11(1): 35–46.
  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003; 426(6967): 620.
  • McCormick MA, Delaney JR, Tsuchiya M, Tsuchiyama S, Shemorry A, Sim S, etal. A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of aging. Cell Metab. 2015; 22(5): 895–906.
  • Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, etal. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012; 335(6076): 1638–43.
  • Wu JJ, Liu J, Chen Edmund B, Wang Jennifer J, Cao L, Narayan N, etal. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 2013; 4(5): 913–20.
  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, etal. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009; 460(7253): 392–5. [PubMed Abstract] [PubMed CentralFull Text].
  • Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, etal. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011; 66A(2): 191–201.
  • Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, etal. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell. 2014; 13(3): 468–77.
  • Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schroder S, Adler T, etal. Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest. 2013; 123(8): 3272–91.
  • Fok WC, Chen Y, Bokov A, Zhang Y, Salmon AB, Diaz V, etal. Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome. PLoS One. 2014; 9(1): e83988.
  • Zhang Y, Bokov A, Gelfond J, Soto V, Ikeno Y, Hubbard G, etal. Rapamycin extends life and health in C57BL/6 Mice. J Gerontol A Biol Sci Med Sci. 2014; 69A(2): 119–30.
  • Hasty P, Livi CB, Dodds SG, Jones D, Strong R, Javors M, etal. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res. 2014; 7(1): 169–78.
  • Fischer KE, Gelfond JA, Soto VY, Han C, Someya S, Richardson A, etal. Health effects of long-term rapamycin treatment: the impact on mouse health of enteric rapamycin treatment from four months of age throughout life. PLoS One. 2015; 10(5): e0126644.
  • Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between Mammalian Target of Rapamycin (mTOR), Amyloid-β, and Tau: effects on cognitive impairments. J Biol Chem. 2010; 285(17): 13107–20.
  • Majumder S, Caccamo A, Medina DX, Benavides AD, Javors MA, Kraig E, etal. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and enhancing NMDA signaling. Aging Cell. 2012; 11(2): 326–35.
  • Ehninger D, Neff F, Xie K. Longevity, aging and rapamycin. Cell Mol Life Sci. 2014; 71(22): 4325–46.
  • Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, etal. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014; 6(268): 268ra179.
  • Hurez V, Dao V, Liu A, Pandeswara S, Gelfond J, Sun L, etal. Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell. 2015; 14(6): 945–56.
  • Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011; 10(11): 868–80.
  • Tardif S, Bales K, Williams L, Moeller EL, Abbott D, Schultz-Darken N, etal. Preparing new world monkeys for laboratory research. ILAR J. 2006; 47(4): 307–15.
  • Tardif SD, Mansfield KG, Ratnam R, Ross CN, Ziegler TE. The marmoset as a model of aging and age-related diseases. ILAR J. 2011; 52(1): 54–65.
  • Ross CN, Davis K, Dobek G, Tardif SD. Aging phenotypes of common marmosets (Callithrix jacchus). J Aging Res. 2012; 2012: 567143.
  • Tardif S, Ross C, Bergman P, Fernandez E, Javors M, Salmon A, etal. Testing efficacy of administration of the antiaging drug rapamycin in a nonhuman primate, the common marmoset. J Gerontol A Biol Sci Med Sci. 2015; 70(5): 577–87.
  • Ross C, Salmon A, Strong R, Fernandez E, Javors M, Richardson A, etal. Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus). Aging. 2015; 7(11): 964–73.
  • Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015; 84: 435–64.
  • Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev. 2011; 10(2): 205–15.
  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013; 153(6): 1194–217.
  • Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy. 2008; 4(7): 851–65.
  • Conn CS, Qian SB. mTOR signaling in protein homeostasis: less is more?. Cell Cycle. 2011; 10(12): 1940–7.
  • Zhao J, Zhai B, Gygi SP, Goldberg AL. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA. 2015; 112(52): 15790–7.
  • Pickering AM, Lehr M, Miller RA. Lifespan of mice and primates correlates with immunoproteasome expression. J Clin Invest. 2015; 125(5): 2059–68.
  • Zhang Y, Nicholatos J, Dreier JR, Ricoult SJ, Widenmaier SB, Hotamisligil GS, etal. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature. 2014; 513(7518): 440–3.
  • Lamriben L, Graham JB, Adams BM, Hebert DN. N-glycan based ER molecular chaperone and protein quality control system: the calnexin binding cycle. Traffic. 2016; 17(4): 308–26.
  • Radons J. The human HSP70 family of chaperones: where do we stand?. Cell Stress Chaperones. 2016; 21(3): 379–404.
  • Cheng MY, Hartl FU, Martin J, Pollock RA, Kalousek F, Neupert W, etal. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature. 1989; 337(6208): 620–5.
  • Cole A, Wang Z, Coyaud E, Voisin V, Gronda M, Jitkova Y, etal. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2015; 27(6): 864–76.
  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, etal. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004; 36(6): 585–95.
  • Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000; 150(6): 1507–13.
  • Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, etal. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012; 8(4): 445–544.
  • Liu Y, Diaz V, Fernandez E, Strong R, Ye L, Baur JA, etal. Rapamycin-induced metabolic defects are reversible in both lean and obese mice. Aging. 2014; 6(9): 742–54.
  • Gallant-Haidner HL, Trepanier DJ, Freitag DG, Yatscoff RW. Pharmacokinetics and metabolism of sirolimus. Ther Drug Monit. 2000; 22(1): 31–5.
  • Zhang HM, Fu J, Hamilton R, Diaz V, Zhang Y. The mammalian target of rapamycin modulates the immunoproteasome system in the heart. J Mol Cell Cardiol. 2015; 86: 158–67.
  • Osmulski PA, Gaczynska M. Rapamycin allosterically inhibits the proteasome. Mol Pharmacol. 2013; 84(1): 104–13.
  • Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, Davies KJ. The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J. 2010; 432(3): 585–94.
  • Salmon AB, Leonard S, Masamsetti V, Pierce A, Podlutsky AJ, Podlutskaya N, etal. The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J. 2009; 23(7): 2317–26.
  • Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, etal. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci USA. 2009; 106(9): 3059–64.
  • Kaetsu A, Fukushima T, Inoue S, Lim H, Moriyama M. Role of heat shock protein 60 (HSP60) on paraquat intoxication. J Appl Toxicol. 2001; 21(5): 425–30.
  • Wu CW, Biggar KK, Zhang J, Tessier SN, Pifferi F, Perret M, etal. Induction of antioxidant and heat shock protein responses during torpor in the gray mouse lemur, microcebus,urinus. Genomics Proteomics Bioinformatics. 2015; 13(2): 119–26.
  • Hollander JM, Lin KM, Scott BT, Dillmann WH. Overexpression of PHGPx and HSP60/10 protects against ischemia/reoxygenation injury. Free Radical Biol Med. 2003; 35(7): 742–51.
  • Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011; 144(1): 79–91.
  • Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, etal. Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet. 2003; 12(24): 3231–44.
  • Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, etal. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy. 2012; 8(3): 310–25.